| CTD Measurements During 1999 and 2000 as Part o | f | |---|---| | the Global Ocean-Atmosphere-Land System | | | (GOALS)/Pan American Climate Studies (PACS) | | # Volume I K.E. McTaggart and G.C. Johnson Pacific Marine Environmental Laboratory 7600 Sand Point Way NE Seattle, WA 98115 June 2001 # NOTICE Mention of a commercial company or product does not constitute an endorsement by NOAA/OAR. Use of information from this publication concerning proprietary products or the tests of such products for publicity or advertising purposes is not authorized. Contribution No. 2305 from NOAA/Pacific Marine Environmental Laboratory For sale by the National Technical Information Service, 5285 Port Royal Road Springfield, VA 22161 CONTENTS ## Contents | 2. | Sea-Bird 911plus CTD System | |-----------|--| | | 2.1 Conductivity | | | 2.2 Temperature | | | 2.3 Pressure | | | 2.4 Oxygen | | 3. | Data Acquisition | | 4. | Salinity Analysis | | 5. | SEASOFT Processing | | 6. | Post-Cruise Calibrations | | | 6.1 Conductivity | | | 6.2 Temperature | | | 6.3 Oxygen | | 7. | Additional Processing | | 8. | Data Presentation | | 9. | Acknowledgments | | 10. | References | | _ | res and Tables | | CTI | Data Summary | | | | | List | of Figures | | 1a | GP1-99-KA cruise track and station locations | | 1b | GP2-99-KA cruise track and station locations | | 1c | GP3-99-KA cruise track and station locations | | 1d | GP4-99-KA cruise track and station locations | | 1e | GP5-99-KA cruise track and station locations | | 1f | GP7-99-KA cruise track and station locations | | 1g | GP8-99-RB cruise track and station locations | | 1h | GP9-99-KA cruise track and station locations | | 1i | GP1-00-KA cruise track and station locations | | 1j | GP2-00-KA cruise track and station locations | | 1k | GP3-00-KA cruise track and station locations | | 11 | GP4-00-KA cruise track and station locations | | 1m | GP5-00-KA cruise track and station locations | | 1n | GP6-00-KA cruise track and station locations | | 10 | GP7-00-RB cruise track and station locations | | 1p | GP8-00-KA cruise track and station locations | | 2a | Calibrated CTD-bottle conductivity differences plotted against sta- | | | tion number and pressure for cruises GP199 (upper panels) and | | O.L. | GP299 (lower panels) | | 2b | Calibrated CTD-bottle conductivity differences plotted against sta- | | | tion number and pressure for cruises GP399 (upper panels) and GP499 (lower panels) | | 2c | Calibrated CTD-bottle conductivity differences plotted against sta- | | 20 | tion number and pressure for cruises GP599 (upper panels) and | | | GP799 (lower panels) | | | G1 100 (10 wei panels) | iv | 2d | Calibrated CTD-bottle conductivity differences plotted against station number and pressure for cruises GP899 (upper panels) and GP999 (lower panels) | |----|--| | 2e | Calibrated CTD-bottle conductivity differences plotted against station number and pressure for cruises GP100 (upper panels) and GP200 (lower panels) | | 2f | Calibrated CTD-bottle conductivity differences plotted against station number and pressure for cruises GP300 (upper panels) and | | 2g | GP400 (lower panels) | | 2h | GP600 (lower panels) | | 3 | GP800 (lower panels) | | 4 | number and pressure for cruise GP700 | | 5 | sections along 95°W. Contour intervals are 1°C | | 6 | sections along 95°W. Contour intervals are 1°C | | 7 | along 95°W. Contour intervals are 0.1 PSS | | 8 | along 95°W. Contour intervals are 0.1 PSS | | 9 | greater than 26.0 | | 10 | greater than 26.0 | | 11 | from 100–300 μ mol/kg | | 12 | GP2-00-KA spring and GP7-00-RB fall potential temperature (°C) sections along 110°W. Contour intervals are 1°C 65 | | 13 | GP2-99-KA spring and GP8-99-RB fall salinity (PSS-78) sections along 110°W. Contour intervals are 0.1 PSS 66 | | 14 | GP2-00-KA spring and GP7-00-RB fall salinity (PSS-78) sections along 110°W. Contour intervals are 0.1 PSS 67 | | 15 | GP2-99-KA spring and GP8-99-RB fall potential density (kg/m^3) sections along $110^{\circ}W$. Contour intervals are 0.5 less than 26.0 and | | 16 | GP2-00-KA spring and GP7-00-RB fall potential density (kg/m^3) sections along 110°W. Contour intervals are 0.5 less than 26.0 and | | 17 | 0.2 greater than 26.0 | | 18 | and 20 from 100–300 μ mol/kg | CONTENTS | 19 | GP1-00-KA winter and GP5-00-KA fall potential temperature (°C) | | |----|--|----| | | sections along 125°W. Contour intervals are 1°C | 73 | | 20 | GP1-99-KA winter and GP5-99-KA fall salinity (PSS-78) sections | | | | along 125°W. Contour intervals are 0.1 PSS | 74 | | 21 | GP1-00-KA winter and GP5-00-KA fall salinity (PSS-78) sections | | | | along 125°W. Contour intervals are 0.1 PSS | 75 | | 22 | GP1-99-KA winter and GP5-99-KA fall potential density (kg/m ³) | | | | sections along 125°W. Contour intervals are 0.5 less than 26.0 and | | | | 0.2 greater than 26.0 | 76 | | 23 | GP1-00-KA winter and GP5-00-KA fall potential density (kg/m ³) | | | | sections along 125°W. Contour intervals are 0.5 less than 26.0 and | | | | 0.2 greater than 26.0 | 77 | | 24 | GP1-99-KA winter and GP5-99-KA fall potential temperature (°C) | | | | sections along 140°W. Contour intervals are 1°C | 78 | | 25 | GP1-00-KA winter and GP5-00-KA fall potential temperature (°C) | | | | sections along 140°W. Contour intervals are 1°C | 79 | | 26 | GP1-99-KA winter and GP5-99-KA fall salinity (PSS-78) sections | | | | along 140°W. Contour intervals are 0.1 PSS | 80 | | 27 | GP1-00-KA winter and GP5-00-KA fall salinity (PSS-78) sections | | | | along 140°W. Contour intervals are 0.1 PSS | 81 | | 28 | GP1-99-KA winter and GP5-99-KA fall potential density (kg/m ³) | | | | sections along 140°W. Contour intervals are 0.5 less than 26.0 and | | | | 0.2 greater than 26.0 | 82 | | 29 | GP1-00-KA winter and GP5-00-KA fall potential density (kg/m ³) | | | | sections along 140°W. Contour intervals are 0.5 less than 26.0 and | | | | 0.2 greater than 26.0 | 83 | | 30 | GP3-99-KA summer and GP7-99-KA fall potential temperature (°C) | | | | sections along 155°W. Contour intervals are 1°C | 84 | | 31 | GP3-00-KA summer and GP6-00-KA fall potential temperature (°C) | | | | sections along 155°W. Contour intervals are 1°C | 85 | | 32 | GP3-99-KA summer and GP7-99-KA fall salinity (PSS-78) sections | | | | along 155°W. Contour intervals are 0.1 PSS | 86 | | 33 | GP3-00-KA summer and GP6-00-KA fall salinity (PSS-78) sections | | | | along 155°W. Contour intervals are 0.1 PSS | 87 | | 34 | GP3-99-KA summer and GP7-99-KA fall potential density (kg/m ³) | | | | sections along 155°W. Contour intervals are 0.5 less than 26.0 and | | | | 0.2 greater than 26.0 | 88 | | 35 | GP3-00-KA summer and GP6-00-KA fall potential density (kg/m ³) | | | | sections along 155°W. Contour intervals are 0.5 less than 26.0 and | | | | 0.2 greater than 26.0 | 89 | | 36 | GP3-99-KA summer and GP7/9-99-KA fall potential temperature | | | | (°C) sections along 170°W. Contour intervals are 1°C | 90 | | 37 | GP3-00-KA summer and GP6-00-KA fall potential temperature (°C) | | | | sections along 170°W. Contour intervals are 1°C | 91 | | 38 | GP3-99-KA summer and GP7/9-99-KA fall salinity (PSS-78) sections | | | | along 170°W. Contour intervals are 0.1 PSS | 92 | | 39 | GP3-00-KA summer and GP6-00-KA fall salinity (PSS-78) sections | | | | along 170°W. Contour intervals are 0.1 PSS | 93 | | 40 | GP3-99-KA summer and GP7/9-99-KA fall potential density (kg/m³) | | | | sections along 170° W. Contour intervals are 0.5 less than 26.0 and | | | | 0.2 greater than 26.0 | 94 | | 41 | GP3-00-KA summer and GP6-00-KA fall potential density (kg/m^3) | | | | sections along 170° W. Contour intervals are 0.5 less than 26.0 and | | | | 0.2 greater than 26.0 | 95 | vi Contents | 42 | GP4-99-KA summer and GP9-99-KA fall potential temperature (°C) | | |------------|---|------| | | sections along 180°. Contour intervals are 1°C | 96 | | 43 | GP4-00-KA summer and GP8-00-KA fall potential temperature (°C) | 0.77 | | 4.4 | sections along 180°. Contour intervals are 1°C | 97 | | 44 | GP4-99-KA summer and GP9-99-KA fall salinity (PSS-78) sections along 180°. Contour intervals are 0.1 PSS | 98 | | 45 | GP4-00-KA summer and GP8-00-KA fall salinity (PSS-78) sections | 90 | | 40 | along 180°. Contour intervals are 0.1 PSS | 99 | | 46 | GP4-99-KA summer and GP9-99-KA fall potential density (kg/m ³) | 99 | | 10 | sections along 180°. Contour intervals are 0.5 less than 26.0 and 0.2 | | | | greater than 26.0 | 100 | | 47 | GP4-00-KA summer and GP8-00-KA fall potential density (kg/m ³) | 100 | | | sections along 180°. Contour intervals are 0.5 less than 26.0 and 0.2 | | | | greater than 26.0 | 101 | | 48 | GP4-99-KA summer potential temperature (°C) section along 165°E. | | | | Contour intervals are 1°C | 102 | | 49 | GP4-00-KA summer and GP8-00-KA fall potential temperature (°C) | | | | sections along 165°E. Contour intervals are 1°C | 103 | | 50 | GP4-99-KA summer salinity (PSS-78) sections along 165°E. Contour | | | | intervals are 0.1 PSS | 104 | | 51 | GP4-00-KA summer and GP8-00-KA fall salinity (PSS-78) sections | | | -0 | along 165°E. Contour intervals are 0.1 PSS | 105 | | 52 | GP4-99-KA summer potential density (kg/m ³) section along 165°E. | 106 | | - 9 | Contour intervals are 0.5 less than 26.0 and 0.2 greater than 26.0 $GP4-00$ -KA summer and $GP8-00$ -KA fall potential density (kg/m^3) | 106 | | 53 | sections along 165°E. Contour intervals are 0.5 less than 26.0 and
0.2 | | | | greater than 26.0 | 107 | | 54 | GP2-99-KA spring (May 19–28, 1999) and GP8-99-RB fall (Novem- | 101 | | <i>J</i> | ber 23-December 2, 1999) composite TS diagrams along 95°W | 108 | | 55 | GP2-00-KA spring (April 21–30, 2000) and GP7-00-RB fall (Novem- | | | | ber 3–12, 2000) composite TS diagrams along 95°W | 109 | | 56 | GP2-99-KA spring (May 7–14, 1999) and GP8-99-RB fall (November | | | | 11–19, 1999) composite TS diagrams along 110°W | 110 | | 57 | GP2-00-KA spring (May 4–13, 2000) and GP7-00-RB fall (October | | | | 22–30, 2000) composite TS diagrams along 110° W | | | 58 | GP1-99-KA winter (February 11–17, 1999) and GP5-99-KA fall (Septer | | | - ^ | ber 28-October 5, 1999) composite TS diagrams along 125°W | | | 59 | GP1-00-KA winter (February 18–24, 2000) and GP5-00-KA fall (Septer | | | en. | ber 8–17, 2000) composite TS diagrams along 125°W | 113 | | 60 | GP1-99-KA winter (January 30–February 6, 1999) and GP5-99-KA fall (September 16–23, 1999) composite TS diagrams along 140°W. | 114 | | 61 | GP1-00-KA winter (February 8–14, 2000) and GP5-00-KA fall (Septem | | | 01 | ber 20–28, 2000) composite TS diagrams along 140°W | 115 | | 62 | GP3-99-KA summer (July 3–12, 1999) and GP7-99-KA fall (October | 110 | | | 23–31, 1999) composite TS diagrams along 155°W | 116 | | 63 | GP3-00-KA summer (June 17-25, 2000) and GP6-00-KA fall (Octo- | | | | ber 17–25, 2000) composite TS diagrams along 155°W | 117 | | 64 | GP3-99-KA summer (July 15–August 28, 1999) and GP7/9-99-KA | | | | fall (November 5–December 8, 1999) composite TS diagrams along | | | | 170°W | 118 | | 65 | GP3-00-KA summer (June 29–July 7, 2000) and GP6-00-KA fall | | | 0.0 | (October 29–November 4, 2000) composite TS diagrams along 170°W | | | 66 | GP4-99-KA summer (August 17–24, 1999) and GP9-99-KA fall (November 24, 20, 1999) | | | | ber 24–30, 1999) composite TS diagrams along 180° | 120 | Contents | 67 | GP4-00-KA summer (July 30-August 7, 2000) and GP8-00-KA fall | |----------------|--| | | (November 27–December 4, 2000) composite TS diagrams along 180°. 121 | | 68 | GP4-99-KA summer (August 5–14, 1999) composite TS diagram | | | along 165°E | | 69 | GP4-00-KA summer (July 19–26, 2000) and GP8-00-KA fall (Novem- | | | ber 16–23, 2000) composite TS diagrams along 165°E 123 | | 70 | GP7-00-RB fall (October 22–November 3, 2000) composite TO dia- | | | grams along 95°W and 110°W | | | | | T iat | of Tables | | List | of Tables | | 1a | GP1-99-KA CTD Cast Summary | | 1b | GP2-99-KA CTD Cast Summary | | 1c | GP3-99-KA CTD Cast Summary | | 1d | GP4-99-KA CTD Cast Summary | | 1e | GP5-99-KA CTD Cast Summary | | 1f | GP7-99-KA CTD Cast Summary | | 1g | GP8-99-RB CTD Cast Summary | | $1 \mathrm{h}$ | GP9-99-KA CTD Cast Summary | | 1i | GP1-00-KA CTD Cast Summary | | 1j | GP2-00-KA CTD Cast Summary | | 1k | GP3-00-KA CTD Cast Summary | | 11 | GP4-00-KA CTD Cast Summary | | $1 \mathrm{m}$ | GP5-00-KA CTD Cast Summary | | 1n | GP6-00-KA CTD Cast Summary | | 1o | GP7-00-RB CTD Cast Summary 41 | | 1p | GP8-00-KA CTD Cast Summary | | 2 | Drift and viscous heating corrections for CTD temperature calibrations. 44 | | 3 | Station groupings for CTD conductivity calibrations 45 | | 4 | Weather condition code used to describe each set of CTD measure- | | | ments | | 5 | Sea state code used to describe each set of CTD measurements \dots 125 | | 6 | Visibility code used to describe each set of CTD measurements 125 | | 7 | Cloud type | | 8 | Cloud amount | # Contents, Volume II CTD and Hydrographic Data Summaries (continued) VIII CONTENTS # CTD Measurements During 1999 and 2000 as Part of the Global Ocean-Atmosphere-Land System (GOALS)/Pan American Climate Studies (PACS) K.E. McTaggart and G.C. Johnson Abstract. During 1999 and 2000, CTD data were collected in the equatorial Pacific Ocean as part of the Global Ocean-Atmosphere-Land System (GOALS)/Pan American Climate Studies (PACS), follow-up programs to the Tropical Ocean-Global Atmosphere (TOGA) program and Equatorial Pacific Ocean Climate Studies (EPOCS). Summaries of Sea-Bird CTD measurements and hydrographic data acquired on 16 cruises are presented. Composite potential temperature-salinity diagrams and section plots of oceanographic variables along 95°W, 110°W, 125°W, 140°W, 155°W, 170°W, 180°, and 165°E meridians are given. Profiles including station location, meteorological conditions, and abbreviated CTD data listings are shown for each cast. Hydrographic data are listed for each cruise. #### 1. Introduction The Global Ocean-Atmosphere-Land System (GOALS)/Pan American Climate Studies (PACS) Program began in 1995 with scientific objectives to understand and more realistically model (1) the seasonally varying mean climate of the Americas and adjacent ocean regions; (2) the role of boundary processes in forcing seasonal-to-interannual climate variability over the Americas; (3) the coupling between the oceanic mixed layer in the tropical Atlantic and eastern Pacific; and (4) the processes that determine the structure and evolution of the tropical sea-surface temperature field (Piotrowicz, 1995). CTD data are collected in the equatorial Pacific Ocean in conjunction with the maintenance of the Tropical Atmosphere-Ocean (TAO) array. The TAO array is made up of ATLAS wind and thermistor chain moorings and current meter moorings that record and report data in real time using the ARGOS satellite data telemetry system. A major objective of the TAO array is to facilitate understanding, modeling, and prediction of the global interannual climate fluctuations associated with the El Niño-Southern Oscillation phenomena in the tropical Pacific Ocean. To this end, an ocean observing array has been implemented to initialize, force, and verify ocean prediction models in real time. The TAO array consists of approximately 70 ATLAS moorings and current meter moorings within 8 degrees of the equator spanning the Pacific Basin from 95°W to 137°E. The bulk of the array is being maintained by the Pacific Marine Environmental Laboratory (PMEL) TAO Project Office as part of the NOAA Ocean Climate Observing System for the Climate and Global Change Program. The primary objective of TAO cruises is the deployment and recovery of moorings. At a minimum, CTD casts supporting the GOALS/PACS program are conducted at each mooring site to a depth of 1000 m. As time allows, additional CTD work is prioritized as follows: (1) 1000 m casts at 1-degree intervals between 12°N and 8°S along each ship trackline, (2) deep casts at mooring sites to a minimum depth of 3000 m or a maximum depth 200 m above the bottom, (3) 1000 m casts every one-half degree of latitude between 3°N and 3°S. Physical underway operations include shipboard Acoustic Doppler Current Profiler (ADCP) measurements, sea surface temperature (SST) and salinity (SSS) measurements, routine weather observations, and upper air soundings. CTD measurements are used to verify ATLAS temperature sensor data, calculate dynamic height, and at many sites are the only observations of the equatorial Pacific salinity field. These CTD data are quickly processed, calibrated, and distributed internationally to a wide variety of users: biological, chemical, and physical oceanographers at universities and government laboratories including NOAA/NCEP for improvement of ENSO predictions. Summaries of CTD measurements and hydrographic data collected on 16 cruises during 1999 and 2000 are presented here. Data include meridional sections across the equator along 95°W, 110°W, 125°W, 140°W, 155°W, 170°W, 180°, and 165°E. Figures 1a-p show the cruise track and CTD station locations for each cruise. Tables 1a-p summarize CTD station information for each cruise. Cruise name notation is GPx-vy-zz, where x is the sequential GOALS/PACS cruise number during each year, yy is the year (99 or 00), and zz is the ship code (KA for the NOAA ship Ka'imimoana, RB for the NOAA ship Ronald H. Brown). Sea-Bird 911plus systems are used to acquire CTD data on all cruises. Pressure, temperature, and conductivity are sampled at a rate of 24 Hz. A prototype oxygen sensor designed by Sea-Bird was added to the primary sensor suite during GP700. Water samples are collected on the upcast using an electronically fired rosette sampler and used to calibrate CTD data (see section 6). Salinity is analyzed using an autosalinometer (see section 4). Sample oxygen concentrations during GP700 were measured using the Winkler method as specified in the WOCE Operations Manual (1994). #### 2. Sea-Bird 911plus CTD System The Sea-Bird Electronics, Inc. (SBE) 911plus CTD system is a real-time data system with the CTD data from the SBE 9plus underwater unit transmitted via a conducting cable to the SBE 11plus deck unit. The serial data from the underwater unit is sent to the deck unit in RS-232 NRZ format. The deck unit decodes the serial data and sends it to a personal computer for display and storage using Sea-Bird SEASOFT software program SEASAVE. The SBE 911plus CTD system transmits data from its primary and auxiliary sensors in the form of binary number equivalents of the frequency or voltage outputs from those sensors. This is referred to as the raw data. The calculations required to convert raw data to engineering units are performed in the software, either in real time, or after the data has been stored in a disk file (Seasoft, 1994). #### 2.1 Conductivity The flow-through conductivity sensing element is a glass tube (cell) with three platinum electrodes. The resistance measured between the center electrode and end electrode pair is determined by the cell geometry and the specific conductance of the fluid within the cell, and controls the output frequency of a Wien Bridge circuit. The sensor has a frequency output of approximately 3 to 12 kHz corresponding to conductivity from 0 to 7 Siemens/meter (0 to 70 mmho/cm). The SBE conductivity sensor has a
typical accuracy/stability of ± 0.0003 S/m/month, and resolution of 0.00004 S/m at 24 Hz. Sensor calibrations are performed at Sea-Bird Electronics, Inc. in Bellevue, Washington on a roughly annual basis. Conductivity calibration certificates show an equation containing the appropriate pressure-dependent correction term to account for the effect of hydrostatic loading (pressure) on the conductivity cell: $$C(S/m) = (g + hf^2 + if^3 + jf^4)/[10(1 + ctcor t + cpcor p)]$$ where g, h, i, j, ctcor, and cpcor are calibration coefficients, f is the instrument frequency (kHz), t is the water temperature (°C), and p is the water pressure (dbar). SEASOFT automatically implements this equation. #### 2.2 Temperature The temperature sensing element is a glass-coated thermistor bead, pressure-protected by a stainless steel tube. The sensor output frequency ranges from approximately 5 to 13 kHz corresponding to temperature from -5 to 35 degrees Celsius. The output frequency is inversely proportional to the square root of the thermistor resistance which controls the output of a patented Wien Bridge circuit. The thermistor resistance is exponentially related to temperature. The SBE thermometer has a typical accuracy/stability of $\pm 0.004^{\circ}$ C per year; and resolution of 0.0003° C at 24 Hz. The SBE thermometer has a fast response time of 0.070 seconds. Sensor calibrations are performed at Sea-Bird Electronics, Inc. on a roughly annual basis. Temperature (IPTS-90) is computed according to $$T(^{\circ}C) = 1/\{g + h[\ln(f0/f)] + i[\ln^2(f0/f)] + j[\ln^3(f0/f)]\} - 273.15$$ where g, h, i, j, and f0 are calibration coefficients, and f is the instrument frequency (kHz). SEASOFT automatically implements this equation, and converts between ITS-90 and IPTS-68 temperature scales when selected. #### 2.3 Pressure The Paroscientific series 4000 Digiquartz high pressure transducer uses a quartz crystal resonator whose frequency of oscillation varies with pressure induced stress measuring changes in pressure as small as 0.01 parts per million with an absolute range of 0 to 10,000 psia (0 to 6885 decibars). Also, a quartz crystal temperature signal is used to compensate for a wide range of temperature changes. Repeatability, hysteresis, and pressure conformance are 0.005% FS. The nominal pressure frequency (0 to full scale) is 34 to 38 kHz. The nominal temperature frequency is 172 kHz + 50 ppm/°C. Periodic sensor calibrations are performed at Sea-Bird Electronics, Inc. Pressure coefficients are first formulated into $$c = c1 + c2 * U + c3 * U^{2}$$ $$d = d1 + d2 * U$$ $$t0 = t1 + t2 * U + t3 * U^{2} + t4 * U^{3} + t5 * U^{4}$$ where U is temperature in degrees Celsius. Then pressure is computed according to $$P(\text{psia}) = c * [1 - (t0^2/t^2)] * \{1 - d[1 - (t0^2/t^2)]\}$$ where t is pressure period (μ s). SEASOFT automatically implements this equation. #### 2.4 Oxygen The SBE-43 prototype used during GP700 uses an electrochemical cell that is constantly polarized. The sensor is temperature compensated using special temperature sensing and an internal microcomputer. The interface electronics reports voltages for oxygen current only. A linear equation of the form I=mV+b, where m=1.0e-6 and b=0.0, yields sensor current as a function of sensor output voltage. The sensor has a thermal time constant of approximately 2.5 s; and an oxygen response time constant that is temperature dependent, increasing with cooler temperatures, ranging from 2 to 12 s. Pre-cruise sensor calibrations are performed at Sea-Bird Electronics, Inc., providing slope, bias, tcor, and pcor coefficients. SEASOFT computes dissolved oxygen according to Owens and Millard (1985). #### 3. Data Acquisition The package enters the water and is held beneath the surface for 60 seconds in order to prime the system. Under ideal conditions the package should be lowered at a rate of 30 m/min to 50 m, 45 m/min to 200 m, and 60 m/min to depth. Ship heave may cause substantial variation about these mean lowering rates. Cable tension is monitored at the winch box display. The position of the package relative to the bottom during deep casts is monitored using the ship's Precision Depth Recorder (PDR). An estimated bottom depth is first obtained from bathymetric charts and then the PDR is run during the bottom 1000 m of the cast. Nominally 12 water samples are collected during the upcast using an SBE rosette. Five- or ten-liter Niskin sample bottles are used depending on the cruise. Bottle closures are performed through the SEASOFT software. A backup of the analog data stream is made on video cassette tape. Digitized data on the PC are backed up onto $\frac{1}{4}$ " QIC-80 cartridge tapes or Zip disks. #### 4. Salinity Analysis Bottle salinity analyses are performed in temperature-controlled environments using Guildline Model 8400B inductive autosalinometers standardized with IAPSO Standard Seawater. The autosalinometer is standardized before each run and either at the end of each run or after no more than 48 samples. The drift between standardizations is monitored and the individual samples are corrected for that drift by linear interpolation. Duplicate samples are taken from the deepest bottle on each cast and analyzed on a subsequent day. Bottle salinities are compared to preliminary CTD salinities at sea to aid in the identification of leaking bottles as well as to monitor the CTD conductivity cells' performance and drift. Their use in calibrating CTD conductivity on shore is detailed in section 6. The expected precision of the autosalinometer with an accomplished operator is 0.001 PSS-78, with an accuracy of 0.003. #### 5. SEASOFT Processing SEASOFT consists of modular menu driven routines for acquisition, display, processing, and archiving of oceanographic data acquired with Sea-Bird equipment and is designed to work with an IBM or compatible personal computer. Raw data are acquired from the instruments and stored unmodified. The conversion module DATCNV uses instrument configuration and precruise calibration files to create a converted engineering unit data file that is operated on by all SEASOFT post processing modules. The following describes each processing module used and notes the specifications in the reduction of GOALS/PACS CTD data. ALIGNCTD advances secondary conductivity relative to temperature by 0.73 s. This is the typical net advance of ducted temperature and conductivity sensors with a 3000-rpm pump. The SBE 11plus deck unit automatically advances primary conductivity. ALIGNCTD was also used to advance GP700 oxygen by 8 s. ROSSUM creates a summary of the bottle data. Pressure, temperature, and conductivity (and oxygen parameters for GP700) are averaged over a 2-s interval after the confirm bit in the upcast data stream. WILDEDIT marks extreme outliers in the data files. The first pass obtains an accurate estimate of the true standard deviation of the data. The data are read in blocks of 100 scans. Data greater than two standard deviations are flagged. The second pass computes a standard deviation over the same 100 scans excluding the flagged values. Values greater than 20 standard deviations are marked bad. All flagged data are excluded. FILTER performs a low-pass filter on pressure with a time constant of 0.15 s and on conductivity with a time constant of 0.03 s. In order to produce zero phase (no time shift) the filter first runs forward through the file and then runs backwards through the file. DERIVE computes selected variables such as GP700 doxc/dt. CELLTM uses a recursive filter to remove conductivity cell thermal mass effects from the measured conductivity. Nominal values are used for thermal anomaly amplitude (alpha = 0.03) and the time constant (1/beta = 7.0). LOOPEDIT excludes scans where the minimum velocity of the package is less than 0.25 m/s or the package has reversed its direction owing to ship heave. BINAVG averages the data into 1 dbar pressure bins starting at 1 dbar (no surface bin). The center value of the first bin is set equal to the bin size. The bin minimum and maximum values are the center value plus or minus half the bin size. #### 6. Post-Cruise Calibrations #### 6.1 Conductivity PMEL Fortran program SBECAL combines SEASOFT bottle files into one listing. PMEL Fortran program ADDSAL reads bottle salinity data received from Survey personnel and adds it to the combined listing. MATLAB functions CALCOSn are used to determine the best fit of CTD and bottle data, where n is the order of the station-dependent linear or polynomial fit. CALCOSn recursively throws out data greater than 2.8 standard deviations. CALCOSn returns a single conductivity bias and a conductivity slope for each station. A station-dependent slope coefficient best models the gradual shift in the conductivity sensor within each station grouping with time. CALCOPn additionally returns a linear pressure term (modified beta) that is multiplied by CTD pressure and added to conductivity. The order of the polynomial was chosen to keep the standard deviation of each grouping to a minimum. Table 3 lists the conductivity calibration coefficients determined for each station grouping. PMEL Fortran program CALMSTR applies post-cruise calibrations to temperature and conductivity, and computes final salinity values. Final pressure calibrations were pre-cruise. CTD-bottle conductivity differences (Figs. 2a-h) are used to verify the success of the fit parameters. #### 6.2 Temperature Adjustments were made to the bias of the thermistors using a linear fit of the sensor drift history from calibration data taken over the previous few years, projected to the midpoint of each cruise. These drift corrections are small (order 1×10^{-3} °C). Also, a uniform correction was applied for heating of the thermistor owing to viscous effects. Thermistors are biased high by this effect and were adjusted down by 0.6e–03°C. This results in errors of no more than ± 0.15 e-03°C
from this effect for the full range of oceanographic temperature and salinity. Table 2 lists the drift and viscous heating corrections applied to temperature for these cruises. #### 6.3 Oxygen In situ oxygen samples collected during GP700 and associated upcast CTD burst data were used for post-measurement calibration. Oxygen saturation values were computed according to Benson and Krause (1984) in units of μ mol/kg. The algorithm used for converting oxygen sensor current to oxygen as described by Owens and Millard (1985) requires a non-linear least squares regression technique in order to determine the best fit coefficients of the model for oxygen sensor behavior to the water sample observations. WHOI program OXFITMR uses Numerical Recipes (Press et al., 1986) Fortran routines MRQMIN, MRQCOF, GAUSSJ, and COVSRT to perform non-linear least squares regression using the Levenberg-Marquardt method (McTaggart et al., 1999). A Fortran subroutine FOXY describes the oxygen model with the derivatives of the model with respect to six coefficients in the following order: oxygen current slope, temperature correction, pressure correction, weight, oxygen current bias, and oxygen current lag. Because the SBE-43 oxygen sensor is temperature compensated, weight was fixed at zero and the temperature correction was fixed at near zero. Because there were no deep titrated samples during GP700, the pressure correction was fixed at the pre-cruise value. 93% of the calibration data were used in the final fit, resulting in a standard deviation of 4.438 μ mol/kg and the following coefficients: ``` bias = 0.007 slope = 0.5056e-3 pcor = 0.1500e-3 tcor = -0.1000e-3 wt = 0.000 lag = -1.174 ``` CTD-bottle oxygen differences are plotted against station number and pressure to show the stability of the calibrated CTD oxygens relative to the bottle oxygens (Fig. 3). #### 7. Additional Processing For 1999 cruises, SEASOFT processing modules are followed by PMEL VAX Fortran program EPSBE, which applies post-cruise calibrations to conductivity and converts the 1-dbar averaged CTD data to EPIC format (Soreide et al., 1995). EPSBE creates a WOCE quality flag associated with each record of pressure, temperature, and CTD salinity. Quality flag definitions can be found in the WOCE Operations Manual (1994). EPSBE skips bad records near the surface and also any records flagged bad by SEASOFT. Measured data are copied back to 0 dbar and gaps are linearly interpolated such that a record exits every 1 dbar. WOCE flags are amended to reflect these changes. EPSBE calculates ITS-90 temperature and salinity (PSS-78), as well as potential temperature (IPTS-68), sigma-t, and sigma-theta using the 1980 equation of state algorithms described by Fofonoff and Millard (1983). Dynamic height in dynamic meters is calculated by integrating down from the sea surface. For 2000 cruises, EPSBE was rewritten as UNIX Fortran program CNV_EPS. CNV_EPS performs the same functions as EPSBE but writes the data in NetCDF format. PMEL VAX Fortran program EPICBOMSTR creates individual bottle files in EPIC format for each cast collected during 1999. PMEL UNIX Fortran program CLB_EPS creates individual bottle files in NetCDF format for casts collected during 2000. #### 8. Data Presentation The majority of the plots that follow were produced using Plot Plus Scientific Graphics System (Denbo, 1992). Figures 4–53 are potential temperature, salinity, and sigma-theta sections for each meridian. Oxygen sections are also included for 95°W and 110°W from GP700. Figures 54–69 are composite potential temperature-salinity diagrams for each meridian. Tables 4–8 define the abbreviations and units used in the CTD data summary listings that are presented alongside 0–1000 m profiles of each cast for each cruise. Hydrographic bottle data at discrete depths are also given for each cruise. #### 9. Acknowledgments The assistance of the officers, crew, and scientific parties of the NOAA ships Ka'imimoana and Ronald H. Brown are gratefully acknowledged. Salinity analyses were successfully completed by each ship's Survey Department personnel, CST Dennis Sweeney and CST Jonathan Shannahoff. Oxygen titrations were performed during GP700 by Melissa Hendricks of Princeton University. Sea-Bird is acknowledged for loan of a SBE-43 oxygen sensor prototype for GP700. Jim Carlson provided useful information on and support for the SBE-43. This research was supported by NOAA's Office of Global Programs. #### 10. References Benson, B.B. and D. Krause Jr. (1984): The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. *Limnol. Oceanogr.*, 29, 620–632. Denbo, D.W. (1992): PPLUS Graphics, P.O. Box 4, Sequim, WA, 98382. Fofonoff, N.P., and R.C. Millard (1983): Algorithms for computation of fundamental properties of seawater. UNESCO Report No. 44, 15–24. Lynch, J.M., L.J. Mangum, and S.P. Hayes (1988): CTD/O₂ measurements during 1986 as part of the Equatorial Pacific Ocean Climate Studies (EPOCS). NOAA Data Report ERL-PMEL-24 (PB89-102859), 261 pp. Mangum, L.J., N.N. Soreide, B.D. Davies, B.D. Spell, and S.P. Hayes (1980): CTD/O₂ measurements during the Equatorial Pacific Ocean Climate Study (EPOCS) in 1979. NOAA Data Report ERL PMEL-1 (PB81-211203), 645 pp. Mangum, L.J., and S. P. Hayes (1983): CTD/O₂ measurements during 1980 and 1981 as part of the Equatorial Pacific Ocean Climate Studies (EPOCS). NOAA Data Report ERL PMEL-9 (PB81-211203), 621 pp. Mangum, L.J., and S.P. Hayes (1985): CTD/O₂ measurements during 1982 and 1983 as part of the Equatorial Pacific Ocean Climate Studies (EPOCS). NOAA Data Report ERL PMEL-13 (PB85-239648/XAB), 421 pp. Mangum, L.J., J.M. Lynch, and S.P. Hayes (1987): CTD/O₂ measurements during 1984 and 1985 as part of the Equatorial Pacific Ocean Climate Studies (EPOCS). NOAA Data Report ERL PMEL-18 (PB88-102082), 341 pp. - Mangum, L.J., J.M. Lynch, K.E. McTaggart, L. Stratton, and S.P. Hayes (1991): CTD/O₂ measurements collected on TEW (Transport of Equatorial Waters) June–August 1987. NOAA Data Report ERL PMEL-33 (PB91-224527), 375 pp. - Mangum, L., J. Lynch, L. Stratton, and K. McTaggart (1993): CTD/O₂ measurements during 1987 and 1988 as part of the Equatorial Pacific Ocean Climate Studies (EPOCS). NOAA Data Report ERL PMEL-46 (PB94-109915), 621 pp. - McTaggart, K., L. Stratton, and L. Mangum (1993): $\mathrm{CTD}/\mathrm{O}_2$ measurements during 1989 and 1990 as part of the Equatorial Pacific Ocean Climate Studies (EPOCS). NOAA Data Report ERL PMEL-47 (PB94-103249), 466 pp. - McTaggart, K., D. Wilson, and L. Mangum (1993): CTD measurements collected on a Climate and Global Change cruise along 170°W during February–April 1990. NOAA Data Report ERL PMEL-44 (PB93-226041), 265 pp. - McTaggart, K., and L. Mangum (1994): CTD/O₂ measurements during 1991 and 1992 as part of the Equatorial Pacific Ocean Climate Studies (EPOCS). NOAA Data Report ERL PMEL-50 (PB94-219003), 742 pp. - McTaggart, K.E., M.K. O'Haleck, G.C. Johnson, and L.J. Mangum (1996): CTD measurements during 1993 and 1994 as part of the Equatorial Pacific Ocean Climate Studies (EPOCS). NOAA Data Report ERL PMEL-60 (PB97-137418/PB97-137426) (2 volumes), 976 pp. - McTaggart, K.E., M.K. O'Haleck, G.C. Johnson, and L.J. Mangum (1997): CTD measurements during 1995 and 1996 as part of the Global Ocean-Atmosphere-Land System (GOALS) Pan American Climate Studies (PACS). NOAA Data Report ERL PMEL-62 (PB98-109390INZ), 637 pp. - McTaggart, K E., and G.C. Johnson (1999): CTD measurements during 1997 and 1998 as part of the Global Ocean-Atmosphere-Land System (GOALS) Pan American Climate Studies (PACS). NOAA Data Report ERL PMEL-66 (PB99-146128/146110) (2 volumes), 770 pp. - McTaggart, K.E., G.J. Johnson, C.I. Fleurant, and M.O. Baringer (1999): ${\rm CTD/O_2}$ measurements collected on a Climate and Global Change cruise along 24°N in the Atlantic Ocean (WOCE section AR01) during January–February 1998. NOAA Data Report ERL PMEL-68 (PB99-155194), 358 pp. - Owens, W.B., and R.C. Millard Jr. (1985): A new algorithm for CTD oxygen calibration. J. Phys. Oceanogr., 15, 621–631. - Piotrowicz, S.R. (1995): Observations and process studies in support of the Global Ocean-Atmosphere-Land System (GOALS)/Pan American Climate Studies (PACS) Program. TAO Implementation Panel Report of the Fourth Meeting, Fortaleza, Brazil, September 12–14, 1995 (draft). - Press, W., B. Flannery, S. Teukolsky, and W. Vetterling (1986): *Numerical Recipes:* The Art of Scientific Computing. Cambridge University Press, 818 pp. - Seasoft CTD Acquisition Software Manual (1994): Sea-Bird Electronics, Inc., 1808 136th Place NE, Bellevue, Washington, 98005. - Soreide, N.N., M.L. Schall, W.H. Zhu, D.W. Denbo, and D.C. McClurg (1995): EPIC: An oceanographic data management, display and analysis system. Proceedings, 11th International Conference on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, January 15–20, 1995, Dallas, TX, 316–321. - WOCE Operations Manual (1994): Volume 3: The Observational Programme, Section 3.1: WOCE Hydrographic Programme, Part 3.1.2: Requirements for WHP Data Reporting. WHP Office Report 90-1, WOCE Report No. 67/91, Woods Hole, MA, 02543. ## FIGURES AND TABLES Figure 1a: GP1-99-KA cruise track and station locations. Table 1a: GP1-99-KA CTD Cast Summary. | Cast | Latitude | Longitude | Date | Time | W/D | W/S | Depth | Cast | |------|----------------------------|----------------------------------|-------------|------|--------------|-------|-------|------| | # | | o o | | | $ m \dot{T}$ | (kts) | (m) | (db) | | 11 | 8° 58.5′N | 140° 16.2′W | 30 Jan 99 | 520 | 57 | 15 | 4882 | 1008 | | 21 | 8° $0.3'$ N | $140^{\circ} 9.7'W$ | 30 Jan 99 | 1327 | 93 | 10 | 5178 | 1003 | | 31 | $7^{\circ} 0.9' \text{N}$ | $140^{\circ} \ \ 3.4'W$ | 30 Jan 99 | 2226 | 90 | 11 | 4973 | 1002 | | 41 | 6° $0.6'$ N | $139^{\circ} 58.3'W$ | 31 Jan 99 | 838
 37 | 10 | 4834 | 1003 | | 51 | $4^{\circ} 56.5' \text{N}$ | $139^{\circ} \ 53.1'W$ | 1 Feb 99 | 757 | 56 | 13 | 4496 | 1003 | | 61 | $4^{\circ} 0.3' \text{N}$ | $140^{\circ} 6.2' \text{W}$ | 1 Feb 99 | 1604 | 56 | 15 | 4418 | 1004 | | 71 | 3° $0.4'N$ | $140^{\circ} \ 15.1'W$ | 1 Feb 99 | 2339 | 65 | 16 | 4334 | 1003 | | 81 | 2° 5.7'N | $140^{\circ} \ 24.7' W$ | 2 Feb 99 | 919 | 84 | 17 | 4334 | 4003 | | 91 | 1° $0.1'N$ | $139^{\circ} 59.1'W$ | 4 Feb 99 | 915 | 81 | 16 | 4323 | 1003 | | 101 | 0° 3.2'N | $139^{\circ} \ 53.2'W$ | 5 Feb 99 | 342 | 102 | 12 | 4360 | 1003 | | 111 | $0^{\circ} 59.4'S$ | $139^{\circ} 54.6' W$ | 5 Feb 99 | 1158 | 81 | 15 | 4210 | 1002 | | 121 | $1^{\circ} 59.9'S$ | $139^{\circ} 54.7' W$ | 5 Feb 99 | 2002 | 88 | 13 | 4100 | 1001 | | 131 | $2^{\circ} 59.9'S$ | $139^{\circ} 56.2' \text{W}$ | 6 Feb 99 | 438 | 81 | 13 | 4309 | 1002 | | 141 | $3^{\circ} 59.9'S$ | $132^{\circ} 28.7'W$ | 8 Feb 99 | 1225 | 110 | 14 | 4734 | 1002 | | 151 | $5^{\circ} 1.3' S$ | $124^{\circ} 56.7'W$ | 11 Feb 99 | 624 | 59 | 13 | 4552 | 1003 | | 161 | $3^{\circ} 59.8'S$ | $124^{\circ} 55.6' \text{W}$ | 11 Feb 99 | 1433 | 88 | 10 | 4523 | 1002 | | 171 | $2^{\circ} 59.9'S$ | $124^{\circ} 55.5' W$ | 11 Feb 99 | 2221 | 100 | 14 | 4629 | 1002 | | 181 | 2° 0.5'S | $124^{\circ} 53.7'W$ | 12 Feb 99 | 637 | 151 | 11 | 4732 | 1003 | | 191 | $0^{\circ} 59.9' S$ | $124^{\circ} \ 35.5' \text{W}$ | 12 Feb 99 | 1433 | 102 | 10 | 4668 | 1003 | | 201 | $0^{\circ} 11.3'S$ | $124^{\circ} \ 21.8' \text{W}$ | 12 Feb 99 | 2025 | 93 | 6 | 4718 | 1003 | | 211 | $1^{\circ} 0.1'N$ | $124^{\circ} 44.4'W$ | 13 Feb 99 | 704 | 88 | 9 | 4578 | 1003 | | 221 | 1° 57.8′N | $125^{\circ} 4.0' \text{W}$ | 13 Feb 99 | 2031 | 108 | 9 | 4673 | 1003 | | 231 | $2^{\circ} 59.9' \text{N}$ | $125^{\circ} \ 15.2' \text{W}$ | 14 Feb 99 | 1131 | 105 | 7 | 4626 | 1002 | | 241 | $4^{\circ} 0.2' \text{N}$ | $125^{\circ} 7.9' \text{W}$ | 14 Feb 99 | 1923 | 157 | 9 | 4493 | 1004 | | 251 | $5^{\circ} 20.7' \text{N}$ | $124^{\circ} 57.6' \text{W}$ | 15 Feb 99 | 536 | 123 | 12 | 3927 | 1002 | | 261 | $5^{\circ} 59.6' \text{N}$ | $125^{\circ} 14.6' W$ | 15 Feb 99 | 1110 | 148 | 4 | 4424 | 1003 | | 271 | 7° 0.0'N | $125^{\circ} \ 23.5' \text{W}$ | 15 Feb 99 | 2211 | 40 | 6 | 4572 | 1003 | | 281 | 8° $4.1'N$ | $124^{\circ} 59.4'W$ | 16 Feb 99 | 705 | 66 | 21 | 4607 | 1003 | | 291 | $9^{\circ} 16.3' \text{N}$ | $124^{\circ} \ 40.1'W$ | 16 Feb 99 | 1747 | 35 | 19 | 4603 | 4107 | | 301 | 10° $4.4'$ N | $124^{\circ} \ 25.0' \mathrm{W}$ | 17 Feb 99 | 201 | 36 | 21 | 4653 | 1005 | Figure 1b: GP2-99-KA cruise track and station locations. Table 1b: GP2-99-KA CTD Cast Summary. | Cast
| Latitude | Longitude | Date | Time | W/D
T | W/S
(kts) | Depth (m) | Cast (db) | |-----------|------------------------------|---|----------------------|-------------|-------------------|--------------|----------------|-----------| | 11 | 26° 6.6′N | 115° 27.9′W | 2 May 99 | 529 | | 13 | . , | 106 | | 21 | 8° 4.0′N | 110° 15.2′W | 2 May 99
7 May 99 | 529 512 | $\frac{337}{350}$ | 13
5 | $3618 \\ 4084$ | 1003 | | 31 | 6° 59.9′N | 110° 13.2 W
110° 3.4′W | 7 May 99
7 May 99 | 1253 | 357 | 4 | 3709 | 1003 | | 41 | 6° 0.1′N | 10° 58.9′W | 7 May 99 | 1233 1934 | 144 | 9 | 3686 | 1004 | | 51 | $5^{\circ} 16.2' \text{N}$ | 109° 57.0′W | 8 May 99 | 700 | 166 | 2 | 3874 | 3503 | | 61 | $4^{\circ} 0.0' \text{N}$ | $109^{\circ} 37.0 \text{ W}$
$110^{\circ} 2.7' \text{W}$ | 9 May 99 | 126 | 201 | 7 | 3916 | 1009 | | 71 | $3^{\circ} 0.2' \text{N}$ | $110^{\circ} \ 6.1'W$ | 9 May 99 | 833 | 192 | 7 | 3905 | 1003 | | 81 | 2° 5.6'N | 110° 10.6′W | 9 May 99 | 1553 | 164 | 6 | 3761 | 1002 | | 101 | $0^{\circ} 4.4' \text{N}$ | 109° 59.2′W | 10 May 99 | 831 | 144 | 5 | 3814 | 3504 | | 111 | 1° 0.1′S | 109° 48.1′W | 12 May 99 | 610 | 181 | 6 | 3853 | 1004 | | 121 | $2^{\circ} 0.8'S$ | 109° 59.2′W | 12 May 99 | 1357 | 147 | 5 | 3943 | 1003 | | 131 | 2° 59.8′S | 109° 59.0′W | 12 May 99 | 2022 | 161 | 5 | 3806 | 503 | | 141 | 4° 0.0′S | 109° 59.4′W | 13 May 99 | 328 | 191 | 3 | 3611 | 1004 | | 151 | 4° 59.3′S | 109° 59.9′W | 13 May 99 | 1033 | 174 | 3 | 3587 | 1002 | | 161 | $5^{\circ} 59.5' S$ | $109^{\circ} 58.4'W$ | 13 May 99 | 1734 | 140 | 8 | 3787 | 1002 | | 171 | $6^{\circ} 59.6' S$ | $109^{\circ} 57.3'W$ | 14 May 99 | 111 | 96 | 16 | 3546 | 1001 | | 181 | $7^{\circ} 59.1'S$ | $109^{\circ} 59.8' \text{W}$ | 14 May 99 | 1326 | 91 | 16 | 3503 | 1003 | | 191 | 8° 1.6'S | $95^{\circ} - 6.5' \text{W}$ | 19 May 99 | 910 | 130 | 13 | 3577 | 2004 | | 192 | $7^{\circ} 47.9' S$ | $95^{\circ} 8.2' \text{W}$ | 19 May 99 | 1905 | 143 | 12 | 3945 | 202 | | 201 | $6^{\circ} 59.9' S$ | $95^{\circ} 5.8' \text{W}$ | 20 May 99 | 22 | 144 | 9 | 3893 | 1001 | | 211 | $6^{\circ} 0.2' S$ | $95^{\circ} 5.2' \text{W}$ | 20 May 99 | 735 | 142 | 11 | 3903 | 1002 | | 221 | 5° 1.3'S | 95° $4.1'W$ | 20 May 99 | 2042 | 136 | 10 | 3824 | 1003 | | 231 | $4^{\circ} 0.1'S$ | 95° $2.8'W$ | 21 May 99 | 357 | 144 | 9 | 3712 | 1003 | | 241 | 3° 0.0'S | $95^{\circ} 0.4' \text{W}$ | 21 May 99 | 1050 | 176 | 8 | 3530 | 1001 | | 251 | $1^{\circ} 58.2'S$ | $95^{\circ} 1.9' W$ | 21 May 99 | 1745 | 149 | 11 | 3355 | 1004 | | 261 | $1^{\circ} 29.9'S$ | 95° $0.1'W$ | 21 May 99 | 2140 | 147 | 9 | 3339 | 1002 | | 271 | $0^{\circ} 59.5' S$ | $94^{\circ} 59.2' \text{W}$ | 22 May 99 | 131 | 145 | 10 | 3349 | 1007 | | 281 | $0^{\circ} 29.8' S$ | $94^{\circ} 59.6' W$ | 22 May 99 | 502 | 114 | 7 | 3389 | 1003 | | 291 | 0° 3.0'S | $94^{\circ} 58.4'W$ | 23 May 99 | 310 | 123 | 10 | 3286 | 3002 | | 292 | $0^{\circ} 6.5'S$ | $94^{\circ} 54.9'W$ | 23 May 99 | 1745 | 128 | 11 | 3379 | 503 | | 301 | $0^{\circ} \ 30.2' \text{N}$ | $94^{\circ} 55.5' \text{W}$ | 23 May 99 | 2134 | 134 | 9 | 3325 | 1002 | | 311 | 1° $0.0'$ N | $94^{\circ} 57.3'W$ | 24 May 99 | 119 | 129 | 9 | 3512 | 1004 | | 321 | $1^{\circ} 30.2' \text{N}$ | $94^{\circ} 59.1'W$ | 24 May 99 | 524 | 133 | 10 | 2625 | 1002 | | 331 | $1^{\circ} 59.8' \text{N}$ | $95^{\circ} 1.6' \text{W}$ | 24 May 99 | 1646 | 142 | 7 | 3207 | 1005 | | 341 | 3° 0.2'N | $94^{\circ} 58.3'W$ | 24 May 99 | 2327 | 172 | 17 | 2726 | 1003 | | 351 | 4° $0.1'N$ | $94^{\circ} 54.6' \mathrm{W}$ | 25 May 99 | 529 | 180 | 10 | 3268 | 1003 | | 361 | 5° $1.1'N$ | $94^{\circ} 56.3'W$ | 25 May 99 | 2104 | 213 | 10 | 3584 | 1003 | | 371 | 6° $0.0'$ N | $94^{\circ} 57.5' \text{W}$ | 26 May 99 | 344 | 194 | 10 | 3745 | 1003 | | 381 | $6^{\circ} 59.4' \text{N}$ | $94^{\circ} 57.7'W$ | 26 May 99 | 1016 | 278 | 4 | 3685 | 1003 | | 391 | $7^{\circ} 58.7' \text{N}$ | $94^{\circ} 58.7'W$ | 26 May 99 | 2013 | 217 | 3 | 3748 | 1003 | | 401 | 9° $0.0'$ N | $95^{\circ} 57.9' \text{W}$ | 27 May 99 | 705 | 215 | 50 | 3678 | 1003 | | 411 | 10° $0.1'$ N | 97° $0.0'$ W | 27 May 99 | 1659 | 64 | 3 | 4043 | 1003 | | 421 | 11° $0.0'$ N | $98^{\circ} 5.1'W$ | 28 May 99 | 240 | 66 | 7 | 3695 | 1002 | | 431 | 12° 28.4′N | $99^{\circ} \ 39.5' \text{W}$ | 28 May 99 | 1508 | 119 | 4 | 3500 | 3302 | Figure 1c: GP3-99-KA cruise track and station locations. ${\bf Table~1c:~GP3-99-KA~CTD~Cast~Summary.}$ | Cast | Latitude | Longitude | Date | Time | W/D | W/S | Depth | Cast | |------|----------------------------|----------------------------------|-----------|------|--------------------|-------|-------|------| | # | | | | | $\dot{\mathrm{T}}$ | (kts) | (m) | (db) | | 11 | 10° 11.6′N | 155° 30.5′W | 3 Jul 99 | 2353 | 68 | 2 | 5272 | 503 | | 21 | $7^{\circ} 59.1' \text{N}$ | $155^{\circ} 0.9' \text{W}$ | 4 Jul 99 | 1535 | 67 | 7 | 5142 | 1002 | | 31 | 7° 0.3'N | $155^{\circ} 1.1'W$ | 5 Jul 99 | 1004 | 23 | 10 | 5020 | 1002 | | 41 | 6° $0.8'$ N | 155° $2.3'W$ | 5 Jul 99 | 1719 | 113 | 11 | 4883 | 1004 | | 51 | 5° $2.3'$ N | $154^{\circ} 54.8' W$ | 6 Jul 99 | 1057 | 122 | 8 | 4609 | 4011 | | 52 | 5° 1.5'N | $154^{\circ} 54.1'W$ | 6 Jul 99 | 1252 | 118 | 9 | 4610 | 202 | | 61 | 4° 1.7'N | $154^{\circ} 57.8' \text{W}$ | 7 Jul 99 | 56 | 109 | 19 | 4696 | 1003 | | 71 | 3° $0.1'N$ | $154^{\circ} 57.1'W$ | 7 Jul 99 | 857 | 97 | 19 | 4806 | 1004 | | 81 | $1^{\circ} 59.1' \text{N}$ | $154^{\circ} 56.9' \text{W}$ | 7 Jul 99 | 1659 | 80 | 9 | 4654 | 1001 | | 82 | 2° 0.7'N | $154^{\circ} 57.0' \text{W}$ | 7 Jul 99 | 2251 | 90 | 16 | 4619 | 203 | | 91 | $1^{\circ} 0.1'N$ | $154^{\circ} 57.9' \text{W}$ | 7 Jul 99 | 704 | 67 | 13 | 4762 | 1002 | | 101 | $0^{\circ} 29.9' \text{N}$ | $154^{\circ} 58.5' \text{W}$ | 7 Jul 99 | 1122 | 50 | 11 | 4783 | 1005 | | 111 | 0° 4.6'N | $154^{\circ} 58.9' \text{W}$ | 8 Jul 99 | 1525 | 75 | 10 | 4647 | 1006 | | 112 | 0° 1.8'N | $154^{\circ} 56.4'W$ | 8 Jul 99 | 2335 | 77 | 10 | 4635 | 203 | | 121 | $0^{\circ} 29.7'S$ | $154^{\circ} 58.3'W$ | 9 Jul 99 | 951 | 62 | 12 | 4888 | 1004 | | 131 | $0^{\circ} 59.5'S$ | 154° 58.9′W | 9 Jul 99 | 1418 | 100 | 17 | 4727 | 1014 | | 141 | $1^{\circ} 59.4'S$ | $154^{\circ} 56.7'W$ | 10 Jul 99 | 345 | 87 | 19 | 3733 | 1003 | | 151 | $2^{\circ} 59.9'S$ | 154° 57.5′W | 10 Jul 99 | 1207 | 87 | 20 | 5514 | 1005 | | 161 | $3^{\circ} 59.5' S$ | 155° $0.7'W$ | 10 Jul 99 | 1910 | 79 | 21 | | 1002 | | 171 | $5^{\circ} 0.4'S$ | 154° 58.4′W | 11 Jul 99 | 535 | 75 | 26 | 5023 | 1003 | | 181 | $6^{\circ} 0.1'S$ | 154° 99.6′W | 11 Jul 99 | 1314 | 100 | 23 | 5777 | 1003 | | 191 | 8° 15.4′S | 155° $1.2'W$ | 12 Jul 99 | 503 | 97 | 22 | 5302 | 1003 | | 201 | $8^{\circ} 2.4'S$ | 166° 38.2′W | 15 Jul 99 | 53 | 76 | 16 | 4101 | 204 | | 211 | 7° 59.9′S | $170^{\circ} 0.4' \text{W}$ | 15 Jul 99 | 2020 | 87 | 14 | 5373 | 1002 | | 221 | $6^{\circ} 59.7'S$ | $170^{\circ} 0.4' \text{W}$ | 16 Jul 99 | 336 | 92 | 16 | 4817 | 1002 | | 231 | 6°
$0.0'$ S | $170^{\circ} 0.6' \text{W}$ | 16 Jul 99 | 1049 | 96 | 16 | 4806 | 1003 | | 241 | 5° 0.3'S | $170^{\circ} 0.2' \text{W}$ | 16 Jul 99 | 1755 | 104 | 17 | 5418 | 1003 | | 251 | 3° 59.6′S | $170^{\circ} 0.1'W$ | 17 Jul 99 | 1146 | 87 | 13 | 5745 | 1001 | | 261 | $2^{\circ} 59.8'S$ | $170^{\circ} 1.5' \text{W}$ | 17 Jul 99 | 1814 | 110 | 13 | 4824 | 1003 | | 271 | $2^{\circ} 9.5'S$ | $170^{\circ} 2.7' \text{W}$ | 18 Jul 99 | 141 | 92 | 13 | 5441 | 1003 | | 281 | 0° 59.8′S | 170° $1.5'W$ | 18 Jul 99 | 1536 | 80 | 13 | 5157 | 1003 | | 291 | $0^{\circ} 0.2' S$ | 169° 47.5′W | 19 Jul 99 | 911 | 64 | 13 | 5417 | 4008 | | 292 | 0° 0.0′N | 169° 45.9′W | 19 Jul 99 | 1521 | 80 | 13 | 5419 | 501 | | 301 | 0° 15.6′N | 169° 45.7′W | 20 Jul 99 | 1313 | 70 | 16 | 5073 | 4008 | | 311 | 0° 29.7′N | 170° 1.4′W | 21 Jul 99 | 642 | 92 | 14 | 5417 | 1002 | | 321 | 1° 0.1′N | 170° 1.6′W | 21 Jul 99 | 1029 | 90 | 15 | 5457 | 1005 | | 331 | 1° 30.6′N | $170^{\circ} 2.1' \text{W}$ | 21 Jul 99 | 1434 | 120 | 12 | 5508 | 1001 | | 341 | 1° 59.2′N | $170^{\circ} 2.1' \text{W}$ | 21 Jul 99 | 1818 | 115 | 15 | 5402 | 1005 | | 351 | 2° 59.9′N | 170° $1.2'W$ | 22 Jul 99 | 246 | 83 | 15 | 5484 | 1003 | | 361 | 4° 0.0′N | 169° 58.7′W | 22 Jul 99 | 1000 | 80 | 14 | 5680 | 1003 | | 371 | 4° 56.8′N | 169° 57.9′W | 22 Jul 99 | 1710 | 90 | 12 | 5809 | 1002 | | 381 | 8° 33.0′N | $167^{\circ} \ 16.3' \mathrm{W}$ | 30 Jul 99 | 246 | 53 | 6 | 4579 | 4003 | Figure 1d: GP4-99-KA cruise track and station locations. Table 1d: GP4-99-KA CTD Cast Summary. | 11 8° 2.7′N 165° 2.0′E 5 Aug 99 1801 122 13 5211 44 12 8° 0.2′N 165° 3.7′E 6 Aug 99 337 118 9 5210 2 21 7° 0.0′N 165° 1.7′E 6 Aug 99 1029 57 4 5151 16 31 5° 59.9′N 165° 0.6′E 6 Aug 99 1029 57 4 5151 16 31 5° 59.9′N 165° 0.6′E 6 Aug 99 1654 52 8 4999 16 41 5° 3.3′N 164° 57.7′E 7 Aug 99 452 55 7 4784 46 42 5° 1.8′N 165° 0.6′E 7 Aug 99 2253 58 8 4775 16 51 4° 0.3′N 165° 0.3′E 8 Aug 99 710 55 7 4490 16 61 3° 0.1′N 165° 0.1′E 8 Aug 99 1342 52 10 4254 16 71 2° 0.6′N 164° 57.8′E 9 Aug 99 447 39 5 4171 46 72 2° 0.2′N 164° 58.8′E 9 Aug 99 736 335 2 4170 2 81 0° 59.9′N 165° 0.8′E 9 Aug 99 1724 171 13 4329 16 101 0° 0.7′N 164° 59.9′E 10 Aug 99 621 191 6 4406 44 111 0° 1.3′S 165° 0.7′E 11 Aug 99 43 140 26 4404 16 121 0° 30.1′S 164° 49.3′E 11 Aug 99 452 110 8 4428 16 131 0° 59.8′S 164° 58.2′E 11 Aug 99 452 110 8 4428 16 141 1° 29.6′S 164° 56.5′E 11 Aug 99 1844 51 60 441 416 152 1° 56.1′S 164° 25.6′E 12 Aug 99 1251 60 10 4438 16 151 1° 52.9′S 164° 15.8′E 11 Aug 99 32 131 176 12 4365 11 161 2° 59.9′S 166° 15.8′E 11 Aug 99 1844 51 6 441 41 152 1° 56.1′S 164° 25.6′E 12 Aug 99 1251 60 10 4438 16 151 1° 52.9′S 164° 15.8′E 11 Aug 99 1844 51 6 441 41 152 1° 56.1′S 164° 25.6′E 12 Aug 99 1309 37 15 3927 16 161 2° 59.9′S 164° 42.0′E 12 Aug 99 1309 37 15 3927 16 171 3° 59.9′S 164° 57.2′E 13 Aug 99 1530 50 14 3226 16 181 4° 59.3′S 165° 10.8′E 13 Aug 99 388 81 10 3604 16 201 6° 59.7′S 164° 57.2′E 13 Aug 99 300 5 122 9 3892 2 212 8° 1.3′S 165° 10.8′E 13 Aug 99 37 16 10 9 3716 11 211 8° 1.5′S 164° 48.9′E 13 Aug 99 37 10 10 9 3716 11 221 8° 1.5′S 164° 57.2′E 13 Aug 99 37 10 10 9 3716 11 221 8° 1.5′S 164° 57.2′E 13 Aug 99 37 10 10 9 3716 11 221 8° 1.5′S 164° 57.2′E 13 Aug 99 37 10 10 10 10 10 10 10 10 10 10 10 10 10 | db) 1006 202 002 002 007 005 003 001 1004 207 003 005 1003 002 002 | |---|---| | 11 8° 2.7′N 165° 2.0′E 5 Aug 99 1801 122 13 5211 44 12 8° 0.2′N 165° 3.7′E 6 Aug 99 337 118 9 5210 5 21 7° 0.0′N 165° 1.7′E 6 Aug 99 1029 57 4 5151 16 31 5° 59.9′N 165° 0.6′E 6 Aug 99 1654 52 8 4999 16 41 5° 3.3′N 164° 57.7′E 7 Aug 99 452 55 7 4784 44 42 5° 1.8′N 165° 0.6′E 7 Aug 99 2253 58 8 4775 16 51 4° 0.3′N 165° 0.3′E 8 Aug 99 710 55 7 4490 16 61 3° 0.1′N 165° 0.1′E 8 Aug 99 1342 52 10 4254 16 71 2° 0.6′N 164° 57.8′E 9 Aug 99 447 39 5 4171 46 71 2° 0.6′N 164° 58.8′E 9 Aug 99 736 335 2 4170 5 81 0° 59.9′N 165° 0.2′E 9 Aug 99 1724 171 13 4329 16 91 0° 30.0′N 165° 0.8′E 9 Aug 99 1724 171 13 4329 16 101 0° 0.7′N 164° 59.9′E 10 Aug 99 621 191 6 4406 44 111 0° 1.3′S 165° 0.7′E 11 Aug 99 43 140 26 4404 16 121 0° 30.1′S 164° 49.3′E 11 Aug 99 452 110 8 4428 16 131 0° 59.8′S 164° 58.2′E 11 Aug 99 1251 60 10 4414 16 141 1° 29.6′S 164° 26.5′E 11 Aug 99 1844 51 6 4441 44 152 1° 56.1′S 164° 25.6′E 12 Aug 99 1739 37 15 3927 16 171 3° 59.9′S 164° 56.6′E 12 Aug 99 1739 37 15 3927 16 181 4° 59.3′S 165° 10.8′E 13 Aug 99 38 81 10 3604 16 181 4° 59.3′S 165° 10.8′E 13 Aug 99 38 81 10 3604 16 181 4° 59.3′S 165° 10.8′E 13 Aug 99 39 30 37 15 3927 16 181 4° 59.3′S 165° 10.8′E 13 Aug 99 39 30 37 15 3927 16 181 4° 59.3′S 165° 10.8′E 13 Aug 99 30 30 37 15 3927 16 181 4° 59.3′S 166° 50.2′E 13 Aug 99 30 30 37 15 3927 16 181 4° 59.3′S 165° 10.8′E 13 Aug 99 38 81 10 3604 16 181 4° 59.3′S 166° 57.2′E 13 Aug 99 393 88 1 10 3604 16 181 4° 59.3′S 166° 57.2′E 13 Aug 99 303 37 15 3927 16 211 8° 1.5′S 164° 57.2′E 13 Aug 99 303 37 15 3927 16 221 8° 1.3′S 164° 57.2′E 13 Aug 99 303 37 15 3827 16 221 8° 1.3′S 164° 57.2′E 13 Aug 99 304 347 84 13 5284 16 251 4° 57.8′S 179° 51.3′W 17 Aug 99 2118 80 11 5521 10 231 6° 59.8′S 179° 51.3′W 17 Aug 99 3125 81 12 5848 16 241 5° 59.9′S 179° 51.4′W 18 Aug 99 347 84 13 5284 16 251 4° 57.8′S 179° 51.4′W 18 Aug 99 300 506 60 15 5627 44 261 3° 59.6′S 179° 54.4′W 19 Aug 99 1030 51 8 5272 10 | 202
.002
.002
.007
.005
.003
.001
.004
.207
.003
.005
.003
.005
.003
.005
.003 | | 12 8° 0.2′N 165° 3.7′E 6 Aug 99 337 118 9 5210 22 1 7° 0.0′N 165° 1.7′E 6 Aug 99 1029 57 4 5151 16 31 5° 59.9′N 165° 0.6′E 6 Aug 99 1654 52 8 4999 16 41 5° 3.3′N 164° 57.7′E 7 Aug 99 452 55 7 4784 42 42 5° 1.8′N 165° 0.6′E 7 Aug 99 2253 58 8 4775 16 51 4° 0.3′N 165° 0.3′E 8 Aug 99 710 55 7 4490 16 61 3° 0.1′N 165° 0.1′E 8 Aug 99 1342 52 10 4254 16 61 3° 0.1′N 165° 0.1′E 8 Aug 99 1342 52 10 4254 16 71 2° 0.6′N 164° 57.8′E 9 Aug 99 447 39 5 4171 46 72 2° 0.2′N 164° 58.8′E 9 Aug 99 776 335 2 4170 2 81 0° 59.9′N 165° 0.2′E 9 Aug 99 1724 171 13 4329 1 91 0° 30.0′N 165° 0.8′E 9 Aug 99 2131 176 12 4365 16 101 0° 0.7′N 164° 59.9′E 10 Aug 99 621 191 6 4406 44 111 0° 1.3′S 165° 0.7′E 11 Aug 99 43 140 26 4404 16 121 0° 30.1′S 164° 49.3′E 11 Aug 99 452 110 8 4428 16 131 0° 59.8′S 164° 49.3′E 11 Aug 99 850 60 10 4414 16 141 1° 29.6′S 164° 25.6′E 12 Aug 99 1251 60 10 4438 16 151 1° 52.9′S 164° 15.8′E 11 Aug 99 320 27 11 4431 16 161 2° 59.9′S 164° 42.0′E 12 Aug 99 1309 37 15 3927 16 171 3° 59.9′S 164° 42.0′E 12 Aug 99 1733 50 14 3226 16 181 4° 59.3′S 165° 10.8′E 12 Aug 99 1733 50 14 3226 16 181 4° 59.3′S 166° 10.8′E 13 Aug 99 57 135 11 3895 32 181 4° 59.3′S 166° 44.3′E 13 Aug 99 57 135 11 3895 32 181 4° 59.7′S 164° 48.9′E 13 Aug 99 57 135 11 3895 32 181 4° 59.8′S 164° 48.9′E 13 Aug 99 57 135 11 3895 32 181 4° 59.8′S 164° 48.9′E 13 Aug 99 57 135 11 3895 32 181 6° 59.7′S 164° 48.9′E 13 Aug 99 57 135 11 3895 32 121 8° 1.3′S 164° 51.7′E 14 Aug 99 347 84 13 5284 16 221 8° 1.3′S 164° 51.7′E 14 Aug 99 347 84 13 5284 16 241 5° 59.8′S 179° 51.3′W 17 Aug 99 2118 80 11 5521 16 246 59.8′S 179° 51.3′W 17 Aug 99 347 84 13 5284 16 241 5° 59.8′S 179° 51.3′W 17 Aug 99 347 84 13 5284 16 241 5° 59.8′S 179° 51.3′W 18 Aug 99 1032 100 16 5088 16 251 4° 57.8′S 179° 55.0′W 19 Aug 99 506 60 15 5687 46 261 3° 59.6′S 179° 54.4′W 19 Aug 99 506 60 15 5687 46 271 3° 0.0′S 179° 54.4′W 19 Aug 99 1325 81 122 5888 16 | 202
.002
.002
.007
.005
.003
.001
.004
.207
.003
.005
.003
.005
.003
.005
.003 | | 21 7° 0.0′N 165° 1.7′E 6 Aug 99 1029 57 4 5151 10 31 5° 59.9′N 165° 0.6′E 6 Aug 99 1654 52 8 4999 16 41 5° 3.3′N 164° 57.7′E 7 Aug 99 452 55 7 4784 44 42 5° 1.8′N 165° 0.6′E 7 Aug 99 2253 58 8 4775 16 51 4° 0.3′N 165° 0.1′E 8 Aug 99 710 55 7 4490 16 61 3° 0.1′N 165° 0.1′E 8 Aug 99 1342 52 10 4254 16 71 2° 0.6′N 164° 57.8′E 9 Aug 99 447 39 5 4171 44 72 2° 0.2′N 164° 58.8′E 9 Aug 99 736 335 2 4170 2 81 0° 59.9′N 165° 0.2′E 9 Aug 99 1724 171 13 4329 16 91 0° 30.0′N 165° 0.8′E 9 Aug 99 2131 176 12 4365 16 101 0°
0.7′N 164° 59.9′E 10 Aug 99 621 191 6 4406 44 111 0° 1.3′S 165° 0.7′E 11 Aug 99 452 110 8 4428 16 121 0° 30.1′S 164° 49.3′E 11 Aug 99 452 110 8 4428 16 131 0° 59.8′S 164° 65.5′E 11 Aug 99 850 60 10 4414 16 141 1° 29.6′S 164° 42.6′E 11 Aug 99 1844 51 6 4441 46 152 1° 56.1′S 164° 25.6′E 12 Aug 99 139 37 15 3927 16 181 4° 59.9′S 164° 42.0′E 12 Aug 99 1733 50 14 3226 10 181 4° 59.3′S 165° 1.8′E 13 Aug 99 252 57 12 2497 16 181 4° 59.3′S 166° 4.3′E 13 Aug 99 252 57 12 2497 16 211 8° 1.5′S 164° 48.9′E 13 Aug 99 347 84 13 5284 10 201 6° 59.7′S 164° 57.2′E 13 Aug 99 347 84 13 5284 10 201 6° 59.7′S 164° 48.9′E 13 Aug 99 347 84 13 5284 10 201 6° 59.8′S 179° 51.3′W 17 Aug 99 347 84 13 5284 10 221 7° 57.8′S 179° 51.3′W 18 Aug 99 1325 81 11 3895 33 221 7° 57.8′S 179° 51.3′W 18 Aug 99 347 84 13 5284 10 251 4° 57.8′S 179° 51.3′W 18 Aug 99 347 84 13 5284 10 261 3° 59.9′S 164° 48.9′E 13 Aug 99 347 84 13 5284 10 261 3° 59.9′S 179° 51.3′W 18 Aug 99 347 84 13 5284 10 261 3° 59.6′S 179° 51.3′W 18 Aug 99 347 84 13 5284 10 261 3° 59.6′S 179° 51.3′W 18 Aug 99 347 84 13 5284 10 261 3° 59.6′S 179° 51.4′W 18 Aug 99 1032 100 16 5088 10 261 3° 59.6′S 179° 54.4′W 19 Aug 99 506 60 15 5627 44 261 3° 59.6′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10 | 002
002
007
005
003
001
004
207
003
005
005
003 | | 31 5° 59.9′N 165° 0.6′E 6 Aug 99 1654 52 8 4999 16 41 5° 3.3′N 164° 57.7′E 7 Aug 99 452 55 7 4784 46 42 5° 1.8′N 165° 0.6′E 7 Aug 99 2253 58 8 4775 16 51 4° 0.3′N 165° 0.3′E 8 Aug 99 710 55 7 4490 10 61 3° 0.1′N 165° 0.1′E 8 Aug 99 1342 52 10 4254 10 71 2° 0.6′N 164° 57.8′E 9 Aug 99 447 39 5 4171 46 72 2° 0.2′N 164° 58.8′E 9 Aug 99 736 335 2 4170 2 81 0° 59.9′N 165° 0.2′E 9 Aug 99 1724 171 13 4329 10 91 0° 30.0′N 165° 0.8′E 9 Aug 99 1724 171 13 4329 10 91 0° 30.0′N 165° 0.8′E 9 Aug 99 621 191 6 4406 46 111 0° 0.7′N 164° 59.9′E 10 Aug 99 621 191 6 4406 46 111 0° 1.3′S 165° 0.7′E 11 Aug 99 452 110 8 4428 10 121 0° 30.1′S 164° 49.3′E 11 Aug 99 452 110 8 4428 10 131 0° 59.9′S 164° 49.3′E 11 Aug 99 850 60 10 4414 11 141 1° 29.6′S 164° 42.0′E 12 Aug 99 1251 60 10 4438 11 151 1° 52.9′S 164° 42.0′E 12 Aug 99 1733 50 14 3226 10 181 4° 59.3′S 166° 18′E 13 Aug 99 252 57 12 2497 10 191 6° 50.0′S 164° 43.9′E 13 Aug 99 252 57 12 2497 10 191 6° 59.9′S 164° 56.6′E 12 Aug 99 388 81 10 3604 11 201 6° 59.7′S 164° 48.9′E 13 Aug 99 252 57 12 2497 10 211 8° 1.5′S 164° 48.9′E 13 Aug 99 388 81 10 3604 11 201 6° 59.7′S 164° 48.9′E 13 Aug 99 57 135 11 3895 32 212 8° 1.3′S 164° 51.7′E 14 Aug 99 57 135 11 3895 32 221 7° 57.8′S 179° 51.3′W 17 Aug 99 347 84 13 5284 10 221 6° 59.8′S 179° 51.3′W 17 Aug 99 347 84 13 5284 10 221 6° 59.8′S 179° 51.3′W 17 Aug 99 1325 81 12 5848 10 221 6° 59.8′S 179° 51.3′W 19 Aug 99 300 51 8 5272 10 | .002
.007
.005
.003
.001
.004
.207
.003
.005
.005
.002
.002 | | 41 5° 3.3′N 164° 57.7′E 7 Aug 99 452 55 7 4784 44 42 5° 1.8′N 165° 0.6′E 7 Aug 99 2253 58 8 4775 16 51 4° 0.3′N 165° 0.3′E 8 Aug 99 710 55 7 4490 16 61 3° 0.1′N 165° 0.1′E 8 Aug 99 1342 52 10 4254 16 71 2° 0.6′N 166° 57.8′E 9 Aug 99 447 39 5 4171 46 71 2° 0.2′N 164° 58.8′E 9 Aug 99 736 335 2 4170 2 81 0° 59.9′N 165° 0.2′E 9 Aug 99 736 335 2 4170 2 81 0° 30.0′N 165° 0.8′E 9 Aug 99 1724 171 13 4329 16 101 0° 0.7′N 164° 59.9′E 10 Aug 99 621 191 6 4406 46 111 0° 1.3′S 165° 0.7′E 11 Aug 99 43 140 26 4404 16 121 0° 30.1′S 164° 49.3′E 11 Aug 99 452 110 8 4428 16 131 0° 59.8′S 164° 26.5′E 11 Aug 99 850 60 10 4414 16 141 1° 29.6′S 164° 15.8′E 11 Aug 99 1251 60 10 4438 16 151 1° 52.9′S 164° 25.6′E 12 Aug 99 124 51 60 10 4438 16 151 1° 55.9′S 164° 42.0′E 12 Aug 99 1039 37 15 3927 16 171 3° 59.9′S 164° 42.0′E 12 Aug 99 1039 37 15 3927 16 181 4° 59.3′S 165° 10.8′E 13 Aug 99 252 57 12 2497 16 181 4° 59.3′S 166° 51.8′E 13 Aug 99 2305 122 9 3892 2 121 8° 1.3′S 164° 51.3′E 13 Aug 99 57 135 11 3895 3 221 8° 1.3′S 164° 51.3′E 14 Aug 99 57 135 11 3895 3 221 8° 1.3′S 164° 51.3′E 14 Aug 99 57 135 11 3895 3 221 7° 57.8′S 179° 51.3′W 17 Aug 99 1325 81 12 5848 16 251 4° 57.8′S 179° 51.3′W 18 Aug 99 347 84 13 5284 16 251 4° 57.8′S 179° 51.3′W 18 Aug 99 347 84 13 5284 16 251 4° 57.8′S 179° 51.3′W 18 Aug 99 347 84 13 5284 16 251 4° 57.8′S 179° 51.3′W 18 Aug 99 347 84 13 5284 16 251 4° 57.8′S 179° 51.3′W 18 Aug 99 347 84 13 5284 16 251 4° 57.8′S 179° 51.3′W 18 Aug 99 347 84 13 5284 16 251 4° 57.8′S 179° 51.3′W 18 Aug 99 347 84 13 5284 16 251 4° 57.8′S 179° 51.4′W 18 Aug 99 347 84 13 5284 16 251 4° 57.8′S 179° 51.4′W 18 Aug 99 347 84 13 5284 16 261 3° 59.6′S 179° 54.4′W 19 Aug 99 506 60 15 5627 46 261 3° 59.6′S 179° 54.4′W 19 Aug 99 3000 51 8 5272 16 | 005
003
001
004
207
003
005
003
002
002 | | 51 4° 0.3′N 165° 0.3′E 8 Aug 99 710 55 7 4490 16 61 3° 0.1′N 165° 0.1′E 8 Aug 99 1342 52 10 4254 16 71 2° 0.6′N 164° 57.8′E 9 Aug 99 447 39 5 4171 46 72 2° 0.2′N 164° 58.8′E 9 Aug 99 736 335 2 4170 2 81 0° 59.9′N 165° 0.2′E 9 Aug 99 736 335 2 4170 2 91 0° 30.0′N 165° 0.2′E 9 Aug 99 1724 171 13 4329 16 101 0° 0.7′N 164° 59.9′E 10 Aug 99 2131 176 12 4365 16 101 0° 0.7′N 164° 59.9′E 10 Aug 99 621 191 6 4406 46 111 0° 1.3′S 165° 0.7′E 11 Aug 99 43 140 26 4404 16 121 0° 30.1′S 164° 49.3′E 11 Aug 99 452 110 8 4428 16 131 0° 59.8′S 164° 58.2′E 11 Aug 99 850 60 10 4414 16 141 1° 29.6′S 164° 26.5′E 11 Aug 99 1251 60 10 4438 16 151 1° 52.9′S 164° 15.8′E 11 Aug 99 1251 60 10 4438 16 152 1° 56.1′S 164° 25.6′E 12 Aug 99 320 27 11 4431 16 161 2° 59.9′S 164° 42.0′E 12 Aug 99 1039 37 15 3927 16 171 3° 59.9′S 164° 56.6′E 12 Aug 99 1733 50 14 3226 16 181 4° 59.3′S 165° 10.8′E 13 Aug 99 252 57 12 2497 16 181 4° 59.3′S 164° 54.3′E 13 Aug 99 938 81 10 3604 16 201 6° 59.7′S 164° 57.2′E 13 Aug 99 139 37 15 3927 16 211 8° 1.5′S 164° 42.0′E 13 Aug 99 938 81 10 3604 16 201 6° 59.7′S 164° 51.7′E 14 Aug 99 1848 80 11 5521 12 212 8° 1.3′S 164° 51.7′E 14 Aug 99 135 122 9 3892 22 212 8° 1.3′S 164° 51.7′E 14 Aug 99 137 35 11 3895 37 221 7° 57.8′S 179° 51.3′W 17 Aug 99 2118 80 11 5521 16 251 4° 57.8′S 179° 51.3′W 17 Aug 99 1325 81 12 5848 16 251 4° 57.8′S 179° 55.0′W 19 Aug 99 506 60 15 5627 46 261 3° 59.6′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 16 271 3° 0.0′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 16 | 003
001
004
207
003
005
003
002
002 | | 61 3° 0.1'N 165° 0.1'E 8 Aug 99 1342 52 10 4254 10 71 2° 0.6'N 164° 57.8'E 9 Aug 99 447 39 5 4171 40 72 2° 0.2'N 164° 58.8'E 9 Aug 99 736 335 2 4170 52 81 0° 59.9'N 165° 0.2'E 9 Aug 99 1724 171 13 4329 10 91 0° 30.0'N 165° 0.8'E 9 Aug 99 2131 176 12 4365 10 101 0° 0.7'N 164° 59.9'E 10 Aug 99 621 191 6 4406 40 111 0° 1.3'S 165° 0.7'E 11 Aug 99 43 140 26 4404 10 121 0° 30.1'S 164° 49.3'E 11 Aug 99 452 110 8 4428 10 131 0° 59.8'S 164° 58.2'E 11 Aug 99 850 60 10 4414 11 11 1° 29.6'S 164° 26.5'E 11 Aug 99 1251 60 10 4438 10 151 1° 52.9'S 164° 15.8'E 11 Aug 99 1844 51 6 4441 40 152 1° 56.1'S 164° 42.0'E 12 Aug 99 1039 37 15 3927 10 171 3° 59.9'S 164° 56.6'E 12 Aug 99 1733 50 14 3226 10 181 4° 59.3'S 165° 10.8'E 13 Aug 99 252 57 12 2497 10 181 4° 59.3'S 165° 10.8'E 13 Aug 99 388 81 10 3604 10 201 6° 59.7'S 164° 57.2'E 13 Aug 99 388 81 10 3604 10 201 6° 59.7'S 164° 57.2'E 13 Aug 99 57 135 11 3895 32 212 8° 1.3'S 164° 57.2'E 13 Aug 99 57 135 11 3895 32 212 8° 1.3'S 164° 57.2'E 13 Aug 99 57 135 11 3895 32 221 7° 57.8'S 179° 51.3'W 17 Aug 99 1188 80 11 5521 10 231 6° 59.8'S 179° 51.3'W 17 Aug 99 1325 81 12 5848 10 251 4° 57.8'S 179° 55.0'W 19 Aug 99 1325 81 12 5848 10 261 3° 59.6'S 179° 54.4'W 19 Aug 99 1325 81 12 5848 10 271 3° 0.0'S 179° 54.4'W 19 Aug 99 1325 81 12 5848 10 | 001
004
207
003
005
003
002
002 | | 71 2° 0.6′N 164° 57.8′E 9 Aug 99 447 39 5 4171 44 72 2° 0.2′N 164° 58.8′E 9 Aug 99 736 335 2 4170 2 81 0° 59.9′N 165° 0.2′E 9 Aug 99 1724 171 13 4329 16 91 0° 30.0′N 165° 0.8′E 9 Aug 99 2131 176 12 4365 16 101 0° 0.7′N 164° 59.9′E 10 Aug 99 621 191 6 4406 46 111 0° 1.3′S 165° 0.7′E 11 Aug 99 43 140 26 4404 16 121 0° 30.1′S 164° 49.3′E 11 Aug 99 452 110 8 4428 16 131 0° 59.8′S 164° 58.2′E 11 Aug 99 850 60 10 4414 16 141 1° 29.6′S 164° 26.5′E 11 Aug 99 1251 60 10 4438 16 151 1° 52.9′S 164° 15.8′E 11 Aug 99 1844 51 6 4441 46 152 1° 56.1′S 164° 25.6′E 12 Aug 99 1320 27 11 4431 16 161 2° 59.9′S 164° 56.6′E 12 Aug 99 1039 37 15 3927 16 171 3° 59.9′S 164° 56.6′E 12 Aug 99 1733 50 14 3226 16 181 4° 59.3′S 165° 10.8′E 13 Aug 99 252 57 12 2497 16 201 6° 59.7′S 164° 48.9′E 13 Aug 99 938 81 10 3604 16 201 6° 59.7′S 164° 48.9′E 13 Aug 99 938 81 10 3604 16 201 6° 59.7′S 164° 48.9′E 13 Aug 99 1305 122 9 3892 5 212 8° 1.3′S 164° 48.9′E 13 Aug 99 218 80 11 5521 16 231 6° 59.8′S 179° 51.3′W 17 Aug 99 218 80 11 5521 16 231 6° 59.8′S 179° 51.3′W 17 Aug 99 218 80 11 5521 16 241 5° 59.9′S 179° 52.8′W 18 Aug 99 1032 100 16 5088 10 251 4° 57.8′S 179° 55.0′W 19 Aug 99 1325 81 12 5848 10 261 3° 59.6′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10 271 3° 0.0′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10 | 1004
207
.003
.005
1003
.002
.002 | | 72 2° 0.2'N 164° 58.8'E 9 Aug 99 736 335 2 4170 2 81 0° 59.9'N 165° 0.2'E 9 Aug 99 1724 171 13 4329 10 91 0° 30.0'N 165° 0.8'E 9 Aug 99 2131 176 12 4365 10 101 0° 0.7'N 164° 59.9'E 10 Aug 99 621 191 6 4406 40 111 0° 1.3'S 165° 0.7'E 11 Aug 99 43 140 26 4404 10 121 0° 30.1'S 164° 49.3'E 11 Aug 99 452 110 8 4428 10 131 0° 59.8'S 164° 58.2'E 11 Aug 99 850 60 10 4414 10 141 1° 29.6'S 164° 26.5'E 11 Aug 99 1251 60 10 4438 10 151 1° 52.9'S 164° 15.8'E 11 Aug 99 1844 51 6 4441 40 152 1° 56.1'S 164° 25.6'E 12 Aug 99 1039 37 15 <td< td=""><td>207
.003
.005
.003
.002
.002</td></td<> | 207
.003
.005
.003
.002
.002 | | 81 0° 59.9′N 165° 0.2′E 9 Aug 99 1724 171 13 4329 10
91 0° 30.0′N 165° 0.8′E 9 Aug 99 2131 176 12 4365 10
101 0° 0.7′N 164° 59.9′E 10 Aug 99 621 191 6 4406 40
111 0° 1.3′S 165° 0.7′E 11 Aug 99 43 140 26 4404 10
121 0° 30.1′S 164° 49.3′E 11 Aug 99 452 110 8 4428 10
131 0° 59.8′S 164° 58.2′E 11 Aug 99 850 60 10 4414 10
141 1° 29.6′S 164° 26.5′E 11 Aug 99 1251 60 10 4438 10
151 1° 52.9′S 164° 15.8′E 11 Aug 99
1844 51 6 4441 40
152 1° 56.1′S 164° 25.6′E 12 Aug 99 320 27 11 4431 10
161 2° 59.9′S 164° 42.0′E 12 Aug 99 1039 37 15 3927 10
171 3° 59.9′S 164° 56.6′E 12 Aug 99 1733 50 14 3226 10
181 4° 59.3′S 165° 10.8′E 13 Aug 99 252 57 12 2497 10
191 6° 0.0′S 165° 4.3′E 13 Aug 99 388 81 10 3604 10
201 6° 59.7′S 164° 42.9′E 13 Aug 99 1606 100 9 3716 10
201 6° 59.7′S 164° 48.9′E 13 Aug 99 2305 122 9 3892 22
212 8° 1.3′S 164° 51.7′E 14 Aug 99 57 135 11 3895 37
221 7° 57.8′S 179° 51.3′W 17 Aug 99 2118 80 11 5521 10
231 6° 59.8′S 179° 51.3′W 18 Aug 99 347 84 13 5284 10
241 5° 59.9′S 179° 52.8′W 18 Aug 99 1032 100 16 5088 10
251 4° 57.8′S 179° 51.4′W 18 Aug 99 1032 100 16 5088 10
251 4° 57.8′S 179° 55.0′W 19 Aug 99 506 60 15 5627 40
261 3° 59.6′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10
271 3° 0.0′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10 | .003
.005
.003
.002
.002 | | 91 0° 30.0′N 165° 0.8′E 9 Aug 99 2131 176 12 4365 10 101 0° 0.7′N 164° 59.9′E 10 Aug 99 621 191 6 4406 40 111 0° 1.3′S 165° 0.7′E 11 Aug 99 43 140 26 4404 10 121 0° 30.1′S 164° 49.3′E 11 Aug 99 452 110 8 4428 10 131 0° 59.8′S 164° 58.2′E 11 Aug 99 850 60 10 4414 10 141 1° 29.6′S 164° 26.5′E 11 Aug 99 1251 60 10 4438 10 151 1° 52.9′S 164° 15.8′E 11 Aug 99 1844 51 6 4441 40 152 1° 56.1′S 164° 25.6′E 12 Aug 99 320 27 11 4431 10 161 2° 59.9′S 164° 42.0′E 12 Aug 99 1039 37 15 3927 10 171 3° 59.9′S 164° 56.6′E 12 Aug 99 1733 50 14 3226 10 181 4° 59.3′S 165° 10.8′E 13 Aug 99 252 57 12 2497 10 191 6° 0.0′S 165° 4.3′E 13 Aug 99 938 81 10 3604 10 201 6° 59.7′S 164° 57.2′E 13 Aug 99 1606 100 9 3716 10 211 8° 1.5′S 164° 48.9′E 13 Aug 99 2305 122 9 3892 2 212 8° 1.3′S 164° 51.7′E 14 Aug 99 57 135 11 3895 37 221 7° 57.8′S 179° 51.3′W 17 Aug 99 2118 80 11 5521 10 231 6° 59.9′S 179° 52.8′W 18 Aug 99 1032 100 16 5088 10 251 4° 57.8′S 179° 51.4′W 18 Aug 99 1325 81 12 5848 10 261 3° 59.6′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10 271 3° 0.0′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10 | .005
.003
.002
.002 | | 101 0° 0.7′N 164° 59.9′E 10 Aug 99 621 191 6 4406 44 111 0° 1.3′S 165° 0.7′E 11 Aug 99 43 140 26 4404 10 121 0° 30.1′S 164° 49.3′E 11 Aug 99 452 110 8 4428 10 131 0° 59.8′S 164° 58.2′E 11 Aug 99 850 60 10 4414 10 141 1° 29.6′S 164° 26.5′E 11 Aug 99 1251 60 10 4438 10 151 1° 52.9′S 164° 15.8′E 11 Aug 99 1251 60 10 4438 10 152 1° 56.1′S 164° 25.6′E 12 Aug 99 320 27 11 4431 10 161 2° 59.9′S 164° 42.0′E 12 Aug 99 1039 37 15 3927 10 171 3° 59.9′S 164° 56.6′E 12 Aug 99 1733 50 14 3226 10 181 4° 59.3′S 165° 10.8′E 13 Aug 99 252 57 12 2497 10 191 6° 0.0′S 165° 4.3′E 13 Aug 99 938 81 10 3604 10 201 6° 59.7′S 164° 57.2′E 13 Aug 99 1606 100 9 3716 10 211 8° 1.5′S 164° 48.9′E 13 Aug 99 2305 122 9 3892 2 212 8° 1.3′S 164° 51.7′E 14 Aug 99 57 135 11 3895 33 221 7° 57.8′S 179° 51.3′W 17 Aug 99 2118 80 11 5521 10 231 6° 59.8′S 179° 51.4′W 18 Aug 99 347 84 13 5284 10 241 5° 59.9′S 179° 52.8′W 18 Aug 99 1032 100 16 5088 10 251 4° 57.8′S 179° 55.0′W 19 Aug 99 1325 81 12 5848 10 261 3° 59.6′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10 271 3° 0.0′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10 | 1003
1002
1002
1002 | | 111 0° 1.3′S 165° 0.7′E 11 Aug 99 43 140 26 4404 10 121 0° 30.1′S 164° 49.3′E 11 Aug 99 452 110 8 4428 10 131 0° 59.8′S 164° 58.2′E 11 Aug 99 850 60 10 4414 10 141 1° 29.6′S 164° 26.5′E 11 Aug 99 1251 60 10 4438 10 151 1° 52.9′S 164° 15.8′E 11 Aug 99 1844 51 6 4441 40 152 1° 56.1′S 164° 25.6′E 12 Aug 99 320 27 11 4431 10 161 2° 59.9′S 164° 42.0′E 12 Aug 99 1039 37 15 3927 10 171 3° 59.9′S 164° 56.6′E 12 Aug 99 1733 50 14 3226 10 181 4° 59.3′S 165° 10.8′E 13 Aug 99 252 57 12 2497 10 191 6° 0.0′S 165° 4.3′E 13 Aug 99 938 81 10 3604 10 201 6° 59.7′S 164° 57.2′E 13 Aug 99 1606 100 9 3716 10 211 8° 1.5′S 164° 48.9′E 13 Aug 99 2305 122 9 3892 2 122 8° 1.3′S 169° 51.3′W 17 Aug 99 2118 80 11 5521 10 231 6° 59.8′S 179° 51.3′W 18 Aug 99 347 84 13 5284 10 241 5° 59.9′S 179° 52.8′W 18 Aug 99 1032 100 16 5088 10 251 4° 57.8′S 179° 55.0′W 19 Aug 99 506 60 15 5627 40 261 3° 59.6′S 179° 54.4′W 19 Aug 99 506 50 15 8 5272 10 | .002
.002
.002 | | 121 0° 30.1′S 164° 49.3′E 11 Aug 99 452 110 8 4428 10 131 0° 59.8′S 164° 58.2′E 11 Aug 99 850 60 10 4414 10 141 1° 29.6′S 164° 26.5′E 11 Aug 99 1251 60 10 4438 10 151 1° 52.9′S 164° 15.8′E 11 Aug 99 1844 51 6 4441 40 152 1° 56.1′S 164° 25.6′E 12 Aug 99 320 27 11 4431 10 161 2° 59.9′S 164° 42.0′E 12 Aug 99 1039 37 15 3927 10 171 3° 59.9′S 164° 56.6′E 12 Aug 99 1733 50 14 3226 10 181 4° 59.3′S 165° 10.8′E 13 Aug 99 252 57 12 2497 10 191 6° 0.0′S 165° 4.3′E 13 Aug 99 938 81 10 3604 10 201 6° 59.7′S 164° 57.2′E 13 Aug 99 1606 100 9 3716 10 211 8° 1.5′S 164° 48.9′E 13 Aug 99 2305 122 9 3892 2 122 8° 1.3′S 169° 51.3′W 17 Aug 99 2118 80 11 5521 10 231 6° 59.8′S 179° 51.3′W 18 Aug 99 347 84 13 5284 10 241 5° 59.9′S 179° 52.8′W 18 Aug 99 1032 100 16 5088 10 251 4° 57.8′S 179° 55.0′W 19 Aug 99 506 60 15 5627 40 261 3° 59.6′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10 271 3° 0.0′S 179° 54.4′W 19 Aug 99 2000 51 8 5272 10 | .002 | | 131 0° 59.8'S 164° 58.2'E 11 Aug 99 850 60 10 4414 10 141 1° 29.6'S 164° 26.5'E 11 Aug 99 1251 60 10 4438 10 151 1° 52.9'S 164° 15.8'E 11 Aug 99 1844 51 6 4441 40 152 1° 56.1'S 164° 25.6'E 12 Aug 99 320 27 11 4431 10 161 2° 59.9'S 164° 42.0'E 12 Aug 99 1039 37 15 3927 10 171 3° 59.9'S 164° 56.6'E 12 Aug 99 1733 50 14 3226 10 181 4° 59.3'S 165° 10.8'E 13 Aug 99 252 57 12 2497 10 191 6° 0.0'S 165° 4.3'E 13 Aug 99 938 81 10 3604 10 201 6° 59.7'S 164° 57.2'E 13 Aug 99 1606 100 9 3716 10 211 8° 1.5'S 164° 48.9'E 13 Aug 99 2305 122 9 | .002 | | 141 1° 29.6′S 164° 26.5′E 11 Aug 99 1251 60 10 4438 10 151 1° 52.9′S 164° 15.8′E 11 Aug 99 1844 51 6 4441 40 152 1° 56.1′S 164° 25.6′E 12 Aug 99 320 27 11 4431 10 161 2° 59.9′S 164° 42.0′E 12 Aug 99 1039 37 15 3927 10 171 3° 59.9′S 164° 56.6′E 12 Aug 99 1733 50 14 3226 10 181 4° 59.3′S 165° 10.8′E 13 Aug 99 252 57 12 2497 10 191 6° 0.0′S 165° 4.3′E 13 Aug 99 938 81 10 3604 10 201 6° 59.7′S 164° 57.2′E 13 Aug 99 2305 122 9 3892 2 211 8° 1.5′S 164° 48.9′E 13 Aug 99 2305 122 9 3892 2 212 8° 1.3′S 164° 51.7′E 14 Aug 99 57 135 11 | | | 151 1° 52.9′S 164° 15.8′E 11 Aug 99 1844 51 6 4441 44 152 1° 56.1′S 164° 25.6′E 12 Aug 99 320 27 11 4431 10 161 2° 59.9′S 164° 42.0′E 12 Aug 99 1039 37 15 3927 10 171 3° 59.9′S 164° 56.6′E 12 Aug 99 1733 50 14 3226 10 181 4° 59.3′S 165° 10.8′E 13 Aug 99 252 57 12 2497 10 191 6° 0.0′S 165° 4.3′E 13 Aug 99 938 81 10 3604 10 201 6° 59.7′S 164° 57.2′E 13 Aug 99 1606 100 9 3716 10 211 8° 1.5′S 164° 48.9′E 13 Aug 99 2305 122 9 3892 2 122 8° 1.3′S 164° 51.7′E 14 Aug 99 57 135 11 3895 32 221 7° 57.8′S 179° 51.3′W 17 Aug 99 2118 80 11 5521 10 231 6° 59.8′S 179° 51.4′W 18 Aug 99 347 84 13 5284 10 241 5° 59.9′S 179° 52.8′W 18 Aug 99 1032 100 16 5088 10 251 4° 57.8′S 179° 55.0′W 19 Aug 99 506 60 15 5627 40 261 3° 59.6′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10 271 3° 0.0′S 179° 54.4′W 19 Aug 99 2000 51 8 5272 10 | 00- | | 152 1° 56.1′S 164° 25.6′E 12 Aug 99 320 27 11 4431 10 161 2° 59.9′S 164° 42.0′E 12 Aug 99 1039 37 15 3927 10 171 3° 59.9′S 164° 56.6′E 12 Aug 99 1733 50 14 3226 10 181 4° 59.3′S 165° 10.8′E 13 Aug 99 252 57 12 2497 10 191 6° 0.0′S 165° 4.3′E 13 Aug 99 938 81 10 3604 10 201 6° 59.7′S 164° 57.2′E 13 Aug 99 2305 122 9 3892 2 211 8° 1.5′S 164° 48.9′E 13 Aug 99 2305 122 9 3892 2 212 8° 1.3′S 164° 51.7′E 14 Aug 99 57 135 11 3895 3° 221 7° 57.8′S 179° 51.3′W 17 Aug 99 2118 80 11 5521 10 231 6° 59.8′S 179° 52.8′W 18 Aug 99 1032 100 16 | .002 | | 161 2° 59.9'S 164° 42.0'E 12 Aug 99 1039 37 15 3927 10 171 3° 59.9'S 164° 56.6'E 12 Aug 99 1733 50 14 3226 10 181 4° 59.3'S 165° 10.8'E 13 Aug 99 252 57 12 2497 10 191 6° 0.0'S 165° 4.3'E 13 Aug 99 938 81 10 3604 10 201 6° 59.7'S 164° 57.2'E 13 Aug 99 1606 100 9 3716 10 211 8° 1.5'S 164° 48.9'E 13 Aug 99 2305 122 9 3892 2 212 8° 1.3'S 164° 51.7'E 14 Aug 99 57 135 11 3895 3° 221 7° 57.8'S 179° 51.3'W 17 Aug 99 2118 80 11 5521 10 231 6° 59.8'S 179° 51.4'W 18 Aug 99 347 84 13 5284 10 241 5° 59.9'S 179° 55.0'W 19 Aug 99 506 60 15 | 1004 | | 171 3° 59.9'S 164° 56.6'E 12 Aug 99 1733 50 14 3226 10 181 4° 59.3'S 165° 10.8'E 13 Aug 99 252 57 12 2497 10 191 6° 0.0'S 165° 4.3'E 13 Aug 99 938 81 10 3604 10 201 6° 59.7'S 164° 57.2'E 13 Aug 99 1606 100 9 3716 10 211 8° 1.5'S 164° 48.9'E 13 Aug 99 2305 122 9 3892 2 212 8° 1.3'S 164° 51.7'E 14 Aug 99 57 135 11 3895 3° 221 7° 57.8'S 179° 51.3'W 17 Aug 99 2118 80 11 5521 10 231 6° 59.8'S 179° 51.4'W 18 Aug 99 347 84 13 5284 10 241 5° 59.9'S 179° 52.8'W 18 Aug 99 1032 100 16 5088 10 251 4° 57.8'S 179° 55.0'W 19 Aug 99 506 60 15 | .002 | | 181 4° 59.3′S 165° 10.8′E 13 Aug 99 252 57 12 2497 10 191 6° 0.0′S 165° 4.3′E 13 Aug 99 938 81 10 3604 10 201 6° 59.7′S 164° 57.2′E 13 Aug 99 1606 100 9 3716 10 211 8° 1.5′S 164° 48.9′E 13 Aug 99 2305 122 9 3892 2 212 8° 1.3′S 164° 51.7′E 14 Aug 99 57 135 11 3895 3° 221 7° 57.8′S 179° 51.3′W 17 Aug 99 2118 80 11 5521 10 231 6° 59.8′S 179° 51.4′W 18 Aug 99 347 84 13 5284 10 241 5° 59.9′S 179° 52.8′W 18 Aug 99 1032 100 16 5088 10 251 4° 57.8′S 179° 55.0′W 19 Aug 99 506 60 15 5627 40 261 3° 59.6′S 179° 54.4′W 19 Aug 99 2000 51 8 | .002 | | 191 6° 0.0'S 165° 4.3'E 13 Aug 99 938 81 10 3604 10 201 6° 59.7'S 164° 57.2'E 13 Aug 99 1606 100 9 3716 10 211 8° 1.5'S 164° 48.9'E 13 Aug 99 2305 122 9 3892 2 212 8° 1.3'S 164° 51.7'E 14 Aug 99 57 135 11 3895 37 221 7° 57.8'S 179° 51.3'W 17 Aug 99 2118 80 11 5521 10 231 6° 59.8'S 179° 51.4'W 18 Aug 99 347 84 13 5284 10 241 5° 59.9'S 179° 52.8'W 18 Aug 99 1032 100 16 5088 10 251 4° 57.8'S 179° 55.0'W 19 Aug 99 506 60 15 5627 40 261 3° 59.6'S 179° 54.4'W 19 Aug 99 1325 81 12 5848 10 271 3° 0.0'S 179° 54.4'W 19 Aug 99 2000 51 8 | .002 | | 201 6° 59.7′S 164° 57.2′E 13 Aug 99 1606 100 9 3716 10 211 8° 1.5′S 164° 48.9′E 13 Aug 99 2305 122 9 3892 2 212 8° 1.3′S 164° 51.7′E 14 Aug 99 57 135 11 3895 3′ 221 7° 57.8′S 179° 51.3′W 17 Aug 99 2118 80 11 5521 10 231 6° 59.8′S 179° 51.4′W 18 Aug 99 347 84 13 5284 10 241 5° 59.9′S 179° 52.8′W 18 Aug 99 1032 100 16 5088 10 251 4° 57.8′S
179° 55.0′W 19 Aug 99 506 60 15 5627 40 261 3° 59.6′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10 271 3° 0.0′S 179° 54.4′W 19 Aug 99 2000 51 8 5272 10 | .004 | | 211 8° 1.5′S 164° 48.9′E 13 Aug 99 2305 122 9 3892 2 212 8° 1.3′S 164° 51.7′E 14 Aug 99 57 135 11 3895 3′ 221 7° 57.8′S 179° 51.3′W 17 Aug 99 2118 80 11 5521 10 231 6° 59.8′S 179° 51.4′W 18 Aug 99 347 84 13 5284 10 241 5° 59.9′S 179° 52.8′W 18 Aug 99 1032 100 16 5088 10 251 4° 57.8′S 179° 55.0′W 19 Aug 99 506 60 15 5627 40 261 3° 59.6′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10 271 3° 0.0′S 179° 54.4′W 19 Aug 99 2000 51 8 5272 10 | .002 | | 212 8° 1.3′S 164° 51.7′E 14 Aug 99 57 135 11 3895 33 221 7° 57.8′S 179° 51.3′W 17 Aug 99 2118 80 11 5521 10 231 6° 59.8′S 179° 51.4′W 18 Aug 99 347 84 13 5284 10 241 5° 59.9′S 179° 52.8′W 18 Aug 99 1032 100 16 5088 10 251 4° 57.8′S 179° 55.0′W 19 Aug 99 506 60 15 5627 40 261 3° 59.6′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10 271 3° 0.0′S 179° 54.4′W 19 Aug 99 2000 51 8 5272 10 | .002 | | 221 7° 57.8′S 179° 51.3′W 17 Aug 99 2118 80 11 5521 10
231 6° 59.8′S 179° 51.4′W 18 Aug 99 347 84 13 5284 10
241 5° 59.9′S 179° 52.8′W 18 Aug 99 1032 100 16 5088 10
251 4° 57.8′S 179° 55.0′W 19 Aug 99 506 60 15 5627 40
261 3° 59.6′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10
271 3° 0.0′S 179° 54.4′W 19 Aug 99 2000 51 8 5272 10 | 202 | | 231 6° 59.8′S 179° 51.4′W 18 Aug 99 347 84 13 5284 10
241 5° 59.9′S 179° 52.8′W 18 Aug 99 1032 100 16 5088 10
251 4° 57.8′S 179° 55.0′W 19 Aug 99 506 60 15 5627 40
261 3° 59.6′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10
271 3° 0.0′S 179° 54.4′W 19 Aug 99 2000 51 8 5272 10 | 3704 | | 241 5° 59.9′S 179° 52.8′W 18 Aug 99 1032 100 16 5088 10
251 4° 57.8′S 179° 55.0′W 19 Aug 99 506 60 15 5627 40
261 3° 59.6′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10
271 3° 0.0′S 179° 54.4′W 19 Aug 99 2000 51 8 5272 10 | .002 | | 251 4° 57.8′S 179° 55.0′W 19 Aug 99 506 60 15 5627 40
261 3° 59.6′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10
271 3° 0.0′S 179° 54.4′W 19 Aug 99 2000 51 8 5272 10 | .003 | | 261 3° 59.6′S 179° 54.4′W 19 Aug 99 1325 81 12 5848 10 271 3° 0.0′S 179° 54.4′W 19 Aug 99 2000 51 8 5272 10 | .001 | | 271 3° 0.0′S 179° 54.4′W 19 Aug 99 2000 51 8 5272 10 | 1033 | | 9 | .005 | | 281 2 2975 179 54.5 W 19 A 116 UU 2351 86 7 5/117 11 | .007 | | | .006 | | 9 | 1005 | | | .005 | | <u> </u> | .007
.001 | | 9 | 1001 | | | .004 | | <u> </u> | .004 | | <u> </u> | .002 | | <u> </u> | 1002 | | 9 | 202 | | 8 | .003 | | · · · · · · · · · · · · · · · · · · · | .002 | | <u> </u> | .004 | | · · · · · · · · · · · · · · · · · · · | 1001 | | 9 | .003 | | 9 | .001 | | · · · · · · · · · · · · · · · · · · · | 1001 | | <u> </u> | .003 | | · · · · · · · · · · · · · · · · · · · | .004 | | 9 | 1003 | | 9 | .002 | | <u> </u> | .004 | Figure 1e: GP5-99-KA cruise track and station locations. Table 1e: GP5-99-KA CTD Cast Summary. | Cast | Latitude | Longitude | Date | Time | W/D | W/S | Depth | Cast | |------|------------------------------|----------------------------------|-------------|------|-----|-------|-------|------| | # | | | | | Т | (kts) | (m) | (db) | | 11 | $14^{\circ} 41.9' \text{N}$ | $149^{\circ} \ 27.0' \text{W}$ | 12 Sep 99 | 2031 | 76 | 13 | | 203 | | 21 | $8^{\circ} 59.8' \text{N}$ | $140^{\circ} \ 16.1'W$ | 16 Sep 99 | 45 | 226 | 9 | 4815 | 1003 | | 31 | $6^{\circ} 59.7' \text{N}$ | $140^{\circ} 6.8' \text{W}$ | 16 Sep 99 | 1315 | 145 | 9 | 4948 | 1002 | | 41 | 6° $0.2'$ N | $140^{\circ} \ \ 3.2'W$ | 16 Sep 99 | 1952 | 157 | 11 | 4797 | 1000 | | 51 | $4^{\circ} 54.1' \text{N}$ | $139^{\circ} \ 53.8'W$ | 17 Sep 99 | 540 | 140 | 15 | 4481 | 4004 | | 61 | 4° $0.0'$ N | $139^{\circ} 57.2'W$ | 18 Sep 99 | 118 | 149 | 11 | 4309 | 1003 | | 71 | 3° 0.2'N | $139^{\circ} 58.2'W$ | 18 Sep 99 | 757 | 133 | 16 | 4291 | 1004 | | 81 | 2° 0.5'N | $139^{\circ} 52.7'W$ | 18 Sep 99 | 1603 | 120 | 15 | 4367 | 1003 | | 91 | 1° 30.1′N | $139^{\circ} 59.7'W$ | 19 Sep 99 | 9 | 145 | 13 | 4448 | 1001 | | 101 | 1° $0.2'N$ | $140^{\circ} 1.4' \text{W}$ | 19 Sep 99 | 443 | 116 | 11 | 4389 | 1003 | | 111 | $0^{\circ} \ 30.2' \text{N}$ | $140^{\circ} \ 2.9'W$ | 19 Sep 99 | 917 | 121 | 10 | 4345 | 1003 | | 121 | 0° 2.6'N | $140^{\circ} 6.1'W$ | 20 Sep 99 | 710 | 71 | 11 | 4323 | 4005 | | 122 | 0° 2.1'N | $139^{\circ} \ 53.5'W$ | 21 Sep 99 | 348 | 94 | 11 | 4350 | 203 | | 131 | $0^{\circ} 59.6' S$ | $139^{\circ} 54.7'W$ | 21 Sep 99 | 1136 | 80 | 9 | 4214 | 1003 | | 141 | $1^{\circ} 59.9'S$ | $139^{\circ} 57.6' \text{W}$ | 22 Sep 99 | 212 | 89 | 9 | 4322 | 1003 | | 151 | $2^{\circ} 59.7'S$ | $139^{\circ} 56.4'W$ | 22 Sep 99 | 927 | 70 | 10 | 4307 | 1003 | | 161 | $3^{\circ} 59.7'S$ | $139^{\circ} 55.5'W$ | 22 Sep 99 | 1627 | 60 | 15 | 4509 | 1003 | | 171 | $4^{\circ} 59.3'S$ | $139^{\circ} 58.0' \text{W}$ | 23 Sep 99 | 411 | 60 | 13 | 4272 | 4006 | | 172 | $5^{\circ} 0.3'S$ | $139^{\circ} 55.0' \text{W}$ | 23 Sep 99 | 1905 | 47 | 16 | 4339 | 202 | | 181 | $7^{\circ} 58.2'S$ | $125^{\circ} 0.9' \text{W}$ | 28 Sep 99 | 541 | 103 | 15 | 4544 | 1005 | | 191 | $7^{\circ} 0.3'S$ | $125^{\circ} 0.0' \text{W}$ | 28 Sep 99 | 1317 | 95 | 15 | 4637 | 1003 | | 201 | 5° 2.3'S | $124^{\circ} 57.0' \text{W}$ | 29 Sep 99 | 349 | 90 | 11 | 4533 | 1004 | | 211 | $4^{\circ} 0.3'S$ | $124^{\circ} 55.8' \text{W}$ | 29 Sep 99 | 1120 | 70 | 11 | 4529 | 1002 | | 221 | 3° $0.4'S$ | $124^{\circ} 54.8'W$ | 29 Sep 99 | 1850 | 84 | 14 | 4637 | 1003 | | 231 | 2° 6.5'S | $124^{\circ} 55.3'W$ | 30 Sep 99 | 640 | 92 | 12 | 4631 | 4007 | | 232 | 2° $2.8'S$ | $124^{\circ} 53.5' W$ | 30 Sep 99 | 1843 | 83 | 12 | 4727 | 203 | | 241 | $1^{\circ} 30.2' S$ | $124^{\circ} \ 44.2'W$ | 30 Sep 99 | 2324 | 100 | 14 | 4570 | 394 | | 251 | $0^{\circ} 59.7'S$ | $124^{\circ} 35.9'W$ | 1 Oct 99 | 406 | 100 | 14 | 4660 | 1003 | | 261 | $0^{\circ} \ 10.5' S$ | $124^{\circ} \ 22.3'W$ | 1 Oct 99 | 2156 | 105 | 18 | 4723 | 1005 | | 271 | $0^{\circ} \ 30.0' \text{N}$ | $124^{\circ} \ 35.8' \mathrm{W}$ | 2 Oct 99 | 310 | 107 | 17 | 4530 | 1004 | | 281 | 1° $0.0'$ N | $124^{\circ} \ 45.4'W$ | 2 Oct 99 | 658 | 107 | 18 | 4610 | 1003 | | 291 | $1^{\circ} 30.0' \text{N}$ | $124^{\circ} 55.5' \text{W}$ | 2 Oct 99 | 1053 | 120 | 18 | 4645 | 1001 | | 301 | $1^{\circ} 57.6' \text{N}$ | $125^{\circ} 6.6' \text{W}$ | 2 Oct 99 | 1437 | 135 | 17 | 4731 | 1003 | | 311 | 3° $0.1'N$ | $125^{\circ} 1.2' \text{W}$ | 3 Oct 99 | 821 | 124 | 20 | 4450 | 1002 | | 321 | $3^{\circ} 59.9' \text{N}$ | $124^{\circ} 57.1'W$ | 3 Oct 99 | 1500 | 135 | 16 | 4434 | 1003 | | 331 | $5^{\circ} 21.9' \text{N}$ | $124^{\circ} 57.6' \text{W}$ | 4 Oct 99 | 600 | 125 | 14 | 4084 | 4007 | | 341 | $5^{\circ} 59.9' \text{N}$ | $124^{\circ} 57.1'W$ | 4 Oct 99 | 2242 | 140 | 10 | 4418 | 1008 | | 351 | $6^{\circ} 59.9' \text{N}$ | $124^{\circ} 57.9'W$ | 5 Oct 99 | 537 | 156 | 16 | 4665 | 1005 | | 361 | 8° 3.3′N | $124^{\circ} 59.7'W$ | 5 Oct 99 | 1450 | 178 | 17 | 4631 | 1004 | Figure 1f: GP7-99-KA cruise track and station locations. Table 1f: GP7-99-KA CTD Cast Summary. | Cast
| Latitude | Longitude | Date | Time | W/D
T | W/S
(kts) | Depth (m) | Cast (db) | |-------------------|--|--|------------------------|---------------------|------------------|--------------|---------------------|---------------------| | 11 | 10° 34.1′N | 155° 33.7′W | 23 Oct 99 | 2054 | 62 | 19 | 5146 | 1004 | | 21 | 7° 56.7′N | 154° 59.2′W | 24 Oct 99 | 1506 | 96 | 14 | 5204 | 1004 | | 31 | 7° 1.3′N | 154° 57.0′W | 24 Oct 99 | 2245 | 123 | 16 | 4833 | 1006 | | 41 | 6° 0.4′N | 154° 56.2′W | 25 Oct 99 | 638 | 128 | 17 | 4770 | 1004 | | 51 | 4° 59.0′N | 154° 55.7′W | 25 Oct 99 | 1431 | 90 | 9 | 4546 | 1005 | | 61 | $4^{\circ} 0.9' \text{N}$ | 154° 57.0′W | 25 Oct 99 | 2222 | 86 | 18 | 4648 | 1003 | | 71 | $3^{\circ} 0.5' \text{N}$ | 154° 57.4′W | 26 Oct 99 | 537 | 76 | 17 | 4748 | 1003 | | 81 | 2° 0.3'N | $154^{\circ} 59.6' W$ | 26 Oct 99 | 1339 | 120 | 12 | 4640 | 1002 | | 91 | $1^{\circ} 0.1'N$ | $154^{\circ} 58.9' W$ | 26 Oct 99 | 2102 | 96 | 16 | 4707 | 1003 | | 101 | 0° 4.6'N | $155^{\circ} \ \ 3.4'W$ | 27 Oct 99 | 1013 | 72 | 17 | 4629 | 4006 | | 102 | 0° 1.1'N | $155^{\circ} \ 2.8'W$ | 27 Oct 99 | 2158 | 72 | 14 | 4649 | 205 | | 111 | $0^{\circ} 29.4'S$ | $155^{\circ} 0.3' \text{W}$ | 28 Oct 99 | 218 | 70 | 13 | 4840 | 1003 | | 121 | $0^{\circ} 59.2'S$ | $154^{\circ} 59.3' W$ | 28 Oct 99 | 633 | 68 | 13 | 4696 | 1006 | | 131 | $1^{\circ} 29.6'S$ | $154^{\circ} 57.6' \text{W}$ | 28 Oct 99 | 1054 | 77 | 14 | 4830 | 1004 | | 141 | 2° $0.2'S$ | $154^{\circ} 56.8' \text{W}$ | 28 Oct 99 | 1509 | 80 | 15 | 4940 | 1002 | | 151 | $2^{\circ} 29.3'S$ | $154^{\circ} 57.1'W$ | 28 Oct 99 | 1930 | 80 | 16 | 4888 | 1004 | | 161 | $2^{\circ} 59.5'S$ | $154^{\circ} 57.9' W$ | 29 Oct 99 | 6 | 78 | 22 | 4852 | 1002 | | 171 | $3^{\circ} 51.9'S$ | $155^{\circ} 2.2' \text{W}$ | 29 Oct 99 | 619 | 76 | 22 | 3683 | 1003 | | 181 | $5^{\circ} 0.1'S$ | $155^{\circ} 1.1'W$ | 29 Oct 99 | 1607 | 77 | 19 | 4244 | 4003 | | 182 | $4^{\circ} 59.7'S$ | $154^{\circ} 59.8' \text{W}$ | 30 Oct 99 | 344 | 78 | 14 | 4950 | 202 | | 191 | $5^{\circ} 59.7'S$ | $154^{\circ} 59.6' \text{W}$ | 30 Oct 99 | 1050 | 77 | 18 | 5181 | 1002 | | 201 | $6^{\circ} 59.6' S$ | $155^{\circ} 0.4' \text{W}$ | 30 Oct 99 | 1812 | 73 | 25 | 5095 | 1004 | | 211 | 8° 17.6′S | 155° $4.6'$ W | 31 Oct 99 | 834 | 56 | 8 | 5278 | 4006 | | 212 | $8^{\circ} 15.5' S$ | $155^{\circ} 0.7' \text{W}$ | 31 Oct 99 | 2114 | 70 | 13 | 5271 | 204 | | 221 | $6^{\circ} 22.9'S$ | $158^{\circ} \ 28.5' \text{W}$ | 1 Nov 99 | 2145 | 91 | 6 | 5194 | 202 | | 231 | $2^{\circ} 15.5' S$ | 165° 48.7′W | 3 Nov 99 | 2238 | 68 | 18 | 5795 | 201 | | 241 | $0^{\circ} 0.9'S$ | 169° 44.9′W | 5 Nov 99 | 111 | 81 | 18 | 5372 | 206 | | 251 | 0° 2.6′S | 170° 1.7′W | 5 Nov
99 | 1021 | 71 | 23 | 5502 | 1003 | | 261 | 0° 30.1′S | 170° 1.4′W | 5 Nov 99 | 1408 | 70 | 20 | 5628 | 1002 | | 271 | 0° 59.9′S | 170° 1.1′W | 5 Nov 99 | 1807 | 55 | 15 | 5731 | 1007 | | 281 | 1° 29.8′S | 170° 2.1′W | 5 Nov 99 | 2231 | 53 | 14 | 5457 | 1002 | | 291 | 2° 11.9′S | 170° 5.8′W | 6 Nov 99 | 934 | 85 | 15 | 5118 | 4004 | | 292 | $2^{\circ} 9.7'S$ | $170^{\circ} 2.4' \text{W}$ | 7 Nov 99 | 1 | 99 | 16 | 4906 | 202 | | 301 | $3^{\circ} 0.0'S$
$4^{\circ} 0.0'S$ | 170° 1.5′W | 7 Nov 99 | 625 | 73 | 20 | 5056 | 1003 | | 311 | $5^{\circ} 0.0 \text{S}$ | 170° 1.0′W | 7 Nov 99 | 1339 | 90
70 | 18 | 5663 | 1001 | | 321 | 5° 59.8′S | $170^{\circ} 0.5' \text{W}$
$170^{\circ} 0.0' \text{W}$ | 7 Nov 99
8 Nov 99 | 2115 | 76
•• | 18 | 5348
4764 | 1002 | | 331 | 5° 59.8′S
6° 59.9′S | $170^{\circ} 0.0' \text{W}$
$170^{\circ} 0.1' \text{W}$ | 8 Nov 99
8 Nov 99 | 456 | 88 | 18 | $4764 \\ 4702$ | $1007 \\ 1003$ | | $\frac{341}{351}$ | 6° 59.9 S
7° 57.6′S | 170° 0.1°W
169° 56.2′W | 8 Nov 99
8 Nov 99 | $1200 \\ 2329$ | 78
66 | 13
13 | $\frac{4702}{5269}$ | 1003 1001 | | 361
361 | 9° 0.1′S | 169 56.2 W
170° 59.2′W | 8 Nov 99
9 Nov 99 | $\frac{2329}{1214}$ | 54 | 2 | 5269
4418 | 1001 | | $\frac{301}{371}$ | 9° 57.1′S | 170 59.2 W
171° 56.8′W | 9 Nov 99
10 Nov 99 | 1214 107 | $\frac{54}{353}$ | 6 | 3909 | 3703 | | 381 | 9 57.1 S
10° 59.9′S | 171 56.8 W
173° 2.2′W | 10 Nov 99
10 Nov 99 | 107 1226 | 353
109 | 6
7 | 3909
4688 | $\frac{3703}{1002}$ | | 381 | 10 99.9 5 | 110 Z.Z W | 10 110V 99 | 1220 | 109 | 1 | 4088 | 1002 | Figure 1g: GP8-99-RB cruise track and station locations. Table 1g: GP8-99-RB CTD Cast Summary. | Cast | Latitude | Longitude | Date | Time | W/D | W/S | Depth | Cast | |------|-----------------------------|------------------------------|-----------|------|-----|-------|-------|------| | # | 0 / | 0 / | | | Т | (kts) | (m) | (db) | | 11 | 8° 2.6′N | $110^{\circ} 8.3'W$ | 11 Nov 99 | 1258 | 65 | 9 | 4231 | 1001 | | 21 | $7^{\circ} 0.4' \text{N}$ | $110^{\circ} 0.3' \text{W}$ | 12 Nov 99 | 1157 | 180 | 10 | 3717 | 1002 | | 31 | 6° 0.0′N | 110° 0.0′W | 12 Nov 99 | 1800 | 170 | 14 | 3685 | 1002 | | 41 | 4° 59.9′N | 109° 59.4′W | 12 Nov 99 | 2356 | 160 | 12 | 3923 | 1002 | | 51 | $4^{\circ} 0.1'N$ | $110^{\circ} 0.0' \text{W}$ | 13 Nov 99 | 742 | 164 | 17 | 3878 | 1003 | | 61 | $3^{\circ} 0.0' \text{N}$ | $110^{\circ} 0.0' \text{W}$ | 13 Nov 99 | 1324 | 148 | 16 | 3883 | 1002 | | 71 | 2° 30.0′N | 110° 8.6′W | 13 Nov 99 | 1720 | 145 | 15 | 3739 | 1002 | | 81 | 2° 6.2′N | 110° 18.5′W | 14 Nov 99 | 454 | 135 | 9 | 3796 | 1005 | | 91 | 1° 29.9′N | 110° $7.3'W$ | 14 Nov 99 | 1040 | 145 | 7 | 3756 | 1014 | | 101 | 1° 0.1′N | 110° 0.1′W | 14 Nov 99 | 1415 | 120 | 15 | 3812 | 1003 | | 111 | 0° 30.3′N | 109° 59.1′W | 14 Nov 99 | 1741 | 100 | 11 | 3693 | 1003 | | 121 | $0^{\circ} \ 3.2' \text{N}$ | 110° 3.1′W | 15 Nov 99 | 603 | 95 | 10 | 3734 | 3777 | | 131 | 0° 29.6′S | $110^{\circ} 0.4'W$ | 16 Nov 99 | 832 | 115 | 9 | 3647 | 1002 | | 141 | $0^{\circ} 59.7'S$ | $110^{\circ} 0.0' \text{W}$ | 16 Nov 99 | 1223 | 100 | 7 | 3989 | 1002 | | 151 | 1° 30.0′S | $109^{\circ} 59.0' \text{W}$ | 16 Nov 99 | 1550 | 110 | 9 | 3874 | 1002 | | 161 | 2° 3.0'S | 109° 57.9′W | 17 Nov 99 | 204 | 125 | 11 | 3929 | 1003 | | 171 | 2° 30.0′S | 109° 59.0′W | 17 Nov 99 | 536 | 120 | 9 | 3904 | 1003 | | 181 | $3^{\circ} 0.1'S$ | 110° 0.1′W | 17 Nov 99 | 859 | 120 | 7 | 3750 | 1004 | | 191 | 4° 0.0′S | 110° 0.0′W | 17 Nov 99 | 1444 | 120 | 13 | 3811 | 1002 | | 201 | 4° 59.9′S | $110^{\circ} 0.4'W$ | 18 Nov 99 | 511 | 110 | 15 | 3522 | 1002 | | 211 | $6^{\circ} 0.0'S$ | $110^{\circ} 0.0' \text{W}$ | 18 Nov 99 | 1114 | 95 | 13 | 3556 | 1000 | | 221 | $7^{\circ} 0.0' S$ | $110^{\circ} 0.0' \text{W}$ | 18 Nov 99 | 1713 | 110 | 15 | 3460 | 1001 | | 231 | $7^{\circ} 59.1'S$ | $109^{\circ} 56.8' \text{W}$ | 19 Nov 99 | 739 | 110 | 14 | 3494 | 3539 | | 241 | $8^{\circ} 0.4'S$ | 95° $7.0'$ W | 23 Nov 99 | 650 | 130 | 10 | 4023 | 4068 | | 251 | 6° 59.9′S | 94° 59.9′W | 24 Nov 99 | 752 | 130 | 17 | 3963 | 1001 | | 261 | 6° 0.0′S | 95° $0.0'$ W | 24 Nov 99 | 1342 | 158 | 15 | 3818 | 1001 | | 271 | $5^{\circ} 0.6'S$ | 95° $3.8'W$ | 24 Nov 99 | 2029 | 165 | 11 | 3819 | 1003 | | 281 | 4° 0.0′S | 95° $0.0'$ W | 25 Nov 99 | 211 | 160 | 15 | 3732 | 1004 | | 291 | $3^{\circ} 0.2'S$ | 95° 0.2'W | 25 Nov 99 | 758 | 160 | 11 | 3540 | 1006 | | 301 | 2° 30.2′S | 95° 1.2′W | 25 Nov 99 | 1126 | 143 | 7 | 2713 | 1002 | | 311 | 1° 59.9′S | 95° 5.8′W | 26 Nov 99 | 205 | 133 | 8 | 3371 | 1001 | | 321 | 1° 30.0′S | 95° 1.0'W | 26 Nov 99 | 614 | 125 | 5 | 3329 | 1001 | | 331 | 1° 0.0′S | 95° $0.0'$ W | 26 Nov 99 | 933 | 135 | 8 | 3324 | 1001 | | 341 | 0° 30.0′S | 95° 1.6'W | 26 Nov 99 | 1245 | 138 | 7 | 3366 | 1001 | | 351 | 0° 6.9′N | 94° 58.3′W | 27 Nov 99 | 357 | 110 | 5 | 3346 | 1001 | | 361 | 0° 30.2′N | 95° 10.7′W | 27 Nov 99 | 726 | 130 | 6 | 3314 | 1000 | | 371 | 1° 0.1′N | 95° 17.2′W | 27 Nov 99 | 1039 | 140 | 15 | 3287 | 1002 | | 381 | 1° 30.0′N | 95° 19.5′W | 27 Nov 99 | 1358 | 148 | 18 | 2799 | 1001 | | 391 | 2° 2.9′N | 95° 20.3′W | 28 Nov 99 | 7 | 150 | 14 | 2758 | 1002 | | 401 | 2° 30.0′N | 95° 13.5′W | 28 Nov 99 | 329 | 150 | 15 | 2548 | 1002 | | 411 | $3^{\circ} 0.0' \text{N}$ | 95° $3.8'W$ | 28 Nov 99 | 705 | 170 | 12 | 3117 | 1001 | | 421 | 3° 32.7′N | 95° 2.6'W | 28 Nov 99 | 1253 | 190 | 18 | 3254 | 1000 | | 431 | $4^{\circ} 0.2' \text{N}$ | 95° 0.1′W | 28 Nov 99 | 2157 | 165 | 13 | 3470 | 1001 | | 441 | 5° 2.6′N | 94° 57.1′W | 29 Nov 99 | 504 | 200 | 10 | 3580 | 1002 | | 451 | 6° 0.0′N | $95^{\circ} 0.0' \text{W}$ | 29 Nov 99 | 1016 | 135 | 11 | 3212 | 1001 | | 461 | 7° 0.0′N | $95^{\circ} 0.0' \text{W}$ | 29 Nov 99 | 1548 | 145 | 3 | 3679 | 1002 | | 471 | 8° 4.3′N | 94° 57.2′W | 30 Nov 99 | 738 | 48 | 10 | 3655 | 1001 | | 481 | 8° 59.9′N | 95° 0.0′W | 1 Dec 99 | 348 | 36 | 13 | 3540 | 1002 | | 491 | 9° 56.8′N | 94° 59.9′W | 1 Dec 99 | 1004 | 30 | 10 | 3861 | 1001 | | 501 | 11° 0.1′N | $95^{\circ} 0.0' \text{W}$ | 2 Dec 99 | 10 | 20 | 12 | 4083 | 1002 | | 511 | $12^{\circ} 0.0' \text{N}$ | $95^{\circ} 0.0' \text{W}$ | 2 Dec 99 | 644 | 15 | 16 | 4028 | 1002 | Figure 1h: GP9-99-KA cruise track and station locations. Table 1h: GP9-99-KA CTD Cast Summary. | Cast | Latitude | Longitude | Date | Time | W/D | W/S | Depth | Cast | |------|------------------------------|------------------------------|-------------|------|----------|-------|-------|------| | # | | | | | ${ m T}$ | (kts) | (m) | (db) | | 11 | $7^{\circ} 58.6' S$ | $179^{\circ} 48.2' \text{W}$ | 24 Nov 99 | 921 | 27 | 4 | 5546 | 1003 | | 21 | $6^{\circ} 59.6' S$ | $179^{\circ} 51.0' \text{W}$ | 24 Nov 99 | 1639 | 48 | 13 | 5407 | 1001 | | 31 | $6^{\circ} 0.1'S$ | $179^{\circ} 53.9' \text{W}$ | 24 Nov 99 | 2333 | 62 | 13 | 4823 | 1001 | | 41 | $4^{\circ} 56.2' S$ | $179^{\circ} 57.2' \text{W}$ | 25 Nov 99 | 702 | 71 | 11 | 5620 | 1002 | | 51 | $3^{\circ} 59.6'S$ | $179^{\circ} 56.2' \text{W}$ | 25 Nov 99 | 1336 | 69 | 17 | 6090 | 1003 | | 61 | 3° $0.2'S$ | $179^{\circ} 55.4' W$ | 25 Nov 99 | 2050 | 68 | 20 | 5402 | 1002 | | 71 | 2° 3.5'S | $179^{\circ} 59.1'W$ | 26 Nov 99 | 1108 | 48 | 19 | 5348 | 4006 | | 72 | 2° 3.4'S | $179^{\circ} 59.1'W$ | 26 Nov 99 | 2257 | 60 | 17 | 5338 | 204 | | 81 | $1^{\circ} \ 30.2' S$ | $179^{\circ} 52.9' W$ | 27 Nov 99 | 325 | 60 | 12 | 5208 | 1002 | | 91 | 1° $0.1'S$ | $179^{\circ} 52.9' W$ | 27 Nov 99 | 748 | 73 | 13 | 5354 | 1002 | | 101 | $0^{\circ} 29.9' S$ | $179^{\circ} 53.0' \text{W}$ | 27 Nov 99 | 1211 | 86 | 13 | 4513 | 1002 | | 111 | 0° 1.4'N | $179^{\circ} 53.7' W$ | 27 Nov 99 | 1853 | 111 | 10 | 5375 | 1002 | | 121 | $0^{\circ} 29.9' N$ | $179^{\circ} 52.9' W$ | 28 Nov 99 | 725 | 94 | 14 | 5723 | 1002 | | 122 | $0^{\circ} 30.2' N$ | $179^{\circ} 52.9' W$ | 28 Nov 99 | 835 | 94 | 14 | 5768 | 188 | | 131 | $0^{\circ} 59.9' \text{N}$ | $179^{\circ} 51.5' W$ | 28 Nov 99 | 1253 | 106 | 16 | 5815 | 1002 | | 141 | $1^{\circ} 30.2' N$ | $179^{\circ} 50.2' \text{W}$ | 28 Nov 99 | 1653 | 102 | 14 | 5575 | 1002 | | 151 | 2° $2.6'N$ | $179^{\circ} 49.2' W$ | 28 Nov 99 | 2106 | 102 | 13 | 5461 | 1004 | | 161 | $2^{\circ} 30.5' \text{N}$ | $179^{\circ} 49.8' \text{W}$ | 29 Nov 99 | 55 | 101 | 14 | 5332 | 1002 | | 171 | 3° 0.3'N | $179^{\circ} 50.7' W$ | 29 Nov 99 | 432 | 107 | 10 | 5624 | 1003 | | 181 | $3^{\circ} 59.9' \text{N}$ | $179^{\circ} 53.1'W$ | 29 Nov 99 | 1052 | 119 | 16 | 5734 | 1005 | | 191 | 5° $0.5'$ N | $179^{\circ} 54.8' \text{W}$ | 29 Nov 99 | 1759 | 110 | 14 | 5653 | 1002 | | 201 | 6° $0.1'N$ | $179^{\circ} 53.4'W$ | 30 Nov 99 | 101 | 81 | 24 | 5405 | 1004 | | 211 | $6^{\circ} 59.8' \text{N}$ | $179^{\circ} 52.4'W$ | 30 Nov 99 | 841 | 80 | 12 | 5698 | 1003 | | 221 | $7^{\circ} 58.4' \text{N}$ | $179^{\circ} 49.6' W$ | 30 Nov 99 | 1709 | 63 | 19 | 5867 | 4004 | | 222 | 8° $0.4'N$ | $179^{\circ} 53.1'W$ | 1 Dec 99 | 433 | 62 | 8 | 5950 | 202 | | 231 | 2° 0.2'N | $170^{\circ} \ \ 3.7'W$ | 5 Dec 99 | 348 | 101 | 20 | 5403 | 1003 | | 241 | 1° $0.1'N$ | $170^{\circ} 2.7' \text{W}$ | 5 Dec 99 | 1115 | 77 | 13 | 5455 | 1002 | | 242 | 1° $0.4'N$ | $170^{\circ} 2.7' \text{W}$ | 5 Dec 99 | 1231 | 108 | 12 | 5446 | 164 | | 251 | $2^{\circ} 59.7' \text{N}$ | $170^{\circ} 1.7' \text{W}$ | 6 Dec 99 | 237 | 111 | 15 | 5468 | 1002 | | 261 | $3^{\circ} 59.2' \text{N}$ | $170^{\circ} 1.3' \text{W}$ | 6 Dec 99 | 1012 | 120 | 14 | 5665 | 1004 | | 271 | $4^{\circ} 59.4' \mathrm{N}$ | $169^{\circ} 58.9' W$ | 6 Dec 99 | 1747 | 124 | 13 | 5783 | 1002 | | 281 | 6° $0.5'N$ | $169^{\circ} 58.4'W$ | 7 Dec 99 | 302 | 89 | 13 | 5438 | 4006 | | 291 | 7° 0.1'N | $169^{\circ} 59.2'W$ | 7 Dec 99 | 1106 | 83 | 12 | 4884 | 1002 | | 301 | $7^{\circ} 59.7' \text{N}$ |
$170^{\circ} 1.9' \text{W}$ | 8 Dec 99 | 240 | 54 | 12 | 5545 | 1004 | Figure 1i: GP1-00-KA cruise track and station locations. Table 1i: GP1-00-KA CTD Cast Summary. | Cast | Latitude | Longitude | Date | Time | W/D | W/S | Depth | Cast | |------|----------------------------|------------------------------|-----------|------|----------|-------|-------|------| | # | -0/ | | | | T | (kts) | (m) | (db) | | 11 | 8° 59.1′N | 140° 16.4′W | 8 Feb 00 | 355 | 50 | 22 | 4815 | 1004 | | 21 | 8° 0.8′N | 140° 11.0′W | 8 Feb 00 | 1136 | 42 | 21 | 5121 | 1002 | | 31 | $7^{\circ} 0.2' \text{N}$ | $140^{\circ} 6.4'W$ | 8 Feb 00 | 1924 | 47 | 19 | 4948 | 1005 | | 41 | $6^{\circ} 0.3' \text{N}$ | 140° 1.9′W | 9 Feb 00 | 247 | 40 | 19 | 4789 | 1004 | | 51 | 5° 1.6′N | 139° 57.1′W | 9 Feb 00 | 1036 | 75
50 | 8 | 4420 | 4007 | | 61 | 4° 0.2′N | 139° 59.2′W | 10 Feb 00 | 1104 | 50 | 15 | 4320 | 1003 | | 71 | $3^{\circ} 0.1'N$ | 139° 59.5′W | 10 Feb 00 | 1959 | 56 | 6 | 4273 | 1002 | | 81 | 2° 4.2′N | 140° 1.0′W | 11 Feb 00 | 843 | 38 | 7 | 4354 | 4004 | | 82 | 1° 59.9′N | 139° 59.7′W | 11 Feb 00 | 1954 | 35 | 9 | 4345 | 202 | | 91 | 1° 30.5′N | 139° 56.9′W | 12 Feb 00 | 42 | 39 | 10 | 4448 | 1013 | | 101 | 1° 0.1′N | 139° 55.7′W | 12 Feb 00 | 515 | 75
50 | 11 | 4324 | 1005 | | 111 | 0° 30.1′N | 139° 54.4′W | 12 Feb 00 | 938 | 52 | 8 | 4326 | 1003 | | 121 | $0^{\circ} 4.2' \text{N}$ | 139° 53.4′W | 12 Feb 00 | 1407 | 64 | 8 | 4313 | 4004 | | 122 | $0^{\circ} 2.0' \text{N}$ | 139° 53.9′W | 13 Feb 00 | 39 | 50 | 7 | 4331 | 204 | | 131 | 0° 30.0′S | 139° 54.0′W | 13 Feb 00 | 435 | 72 | 9 | 4236 | 1002 | | 141 | 0° 59.9′S | 139° 55.2′W | 13 Feb 00 | 821 | 94 | 5 | 4204 | 1001 | | 151 | 2° 1.7'S | 139° 58.6′W | 13 Feb 00 | 1456 | 80 | 8 | 4380 | 1003 | | 161 | 3° 0.9′S | 139° 56.4′W | 13 Feb 00 | 2344 | 97 | 10 | 4304 | 1002 | | 171 | 3° 59.9′S | 139° 56.2′W | 14 Feb 00 | 617 | 95 | 11 | 4499 | 1003 | | 181 | 5° 0.7′S | 139° 55.8′W | 14 Feb 00 | 1321 | 96 | 11 | 4258 | 1003 | | 191 | 7° 56.7′S | $125^{\circ} 0.2' \text{W}$ | 18 Feb 00 | 1836 | 194 | 9 | 4520 | 1002 | | 201 | 7° 0.2′S | 124° 58.9′W | 19 Feb 00 | 225 | 223 | 7 | 4730 | 1003 | | 211 | 5° 59.2′S | 124° 58.4′W | 19 Feb 00 | 910 | 352 | 12 | 4731 | 1003 | | 221 | 4° 59.5′S | 124° 56.7′W | 19 Feb 00 | 2344 | 10 | 5 | 4515 | 1006 | | 231 | 4° 0.0′S | 124° 55.5′W | 20 Feb 00 | 727 | 44 | 8 | 4426 | 1003 | | 241 | $3^{\circ} 0.0'S$ | 124° 53.9′W | 20 Feb 00 | 1503 | 48 | 10 | 4590 | 1005 | | 251 | 2° 4.5′S | 124° 53.4′W | 20 Feb 00 | 2227 | 63 | 16 | 4707 | 1003 | | 261 | 0° 59.4′S | 124° 36.2′W | 21 Feb 00 | 809 | 84 | 11 | 4659 | 1003 | | 271 | 0° 13.5′S | 124° 22.1′W | 21 Feb 00 | 1435 | 88 | 17 | 4698 | 1003 | | 281 | 0° 30.0′N | 124° 37.0′W | 22 Feb 00 | 540 | 70 | 13 | 4569 | 1003 | | 291 | 1° 0.1′N | 124° 46.4′W | 22 Feb 00 | 1000 | 90 | 13 | 4571 | 1002 | | 301 | 1° 30.1′N | 124° 56.9′W | 22 Feb 00 | 1412 | 80 | 17 | 4622 | 1005 | | 311 | $2^{\circ} 0.4'N$ | 125° 6.2′W | 22 Feb 00 | 1822 | 73 | 12 | 4644 | 1004 | | 321 | 3° 0.2′N | 125° 1.6′W | 23 Feb 00 | 123 | 67 | 8 | 4435 | 1002 | | 331 | 4° 0.2′N | 124° 56.6′W | 23 Feb 00 | 751 | 35 | 10 | 4491 | 1002 | | 341 | 5° 3.4′N | 124° 52.4′W | 23 Feb 00 | 1504 | 40 | 15 | 4317 | 1004 | | 351 | $6^{\circ} 0.0' \text{N}$ | 124° 54.0′W | 23 Feb 00 | 2355 | 46 | 18 | 4401 | 1004 | | 361 | 7° 0.2′N | 124° 56.5′W | 24 Feb 00 | 740 | 51 | 16 | 4599 | 1005 | | 371 | 8° 1.7′N | 125° $1.6'W$ | 24 Feb 00 | 127 | 49 | 25 | 4617 | 1004 | Figure 1j: GP2-00-KA cruise track and station locations. Table 1j: GP2-00-KA CTD Cast Summary. | Cast | Latitude | Longitude | Date | Time | W/D | W/S | Depth | Cast | |-------------------|---|--------------------------------|------------------------|-------------|----------------------|---------------|----------------|----------------| | # | | Q | | | $\stackrel{'}{ m T}$ | (kts) | (m) | (db) | | 11 | 12° 6.6′N | 94° 53.8′W | 21 Apr 00 | 130 | 74 | 4 | 4118 | 1004 | | 21 | $10^{\circ} 59.8' \text{N}$ | $94^{\circ} 59.8' \text{W}$ | 21 Apr 00 | 930 | 69 | 2 | 4053 | 1004 | | 31 | $9^{\circ} 58.7' \text{N}$ | $95^{\circ} 2.3' \text{W}$ | 21 Apr 00 | 2339 | 56 | 11 | 3854 | 1002 | | 41 | $9^{\circ} 0.1'N$ | $94^{\circ} 59.2'W$ | 22 Apr 00 | 621 | 75 | 11 | 3532 | 1002 | | 51 | 8° $4.9'$ N | $94^{\circ} 56.5' \text{W}$ | 22 Apr 00 | 1305 | 31 | 7 | 3115 | 1004 | | 61 | 7° 0.2'N | $94^{\circ} 56.7'W$ | 23 Apr 00 | 429 | 47 | 7 | 5001 | 1003 | | 71 | 6° $0.1'N$ | $94^{\circ} 56.5' \text{W}$ | 23 Apr 00 | 1208 | 48 | 3 | 5014 | 1003 | | 81 | 5° 3.2'N | $94^{\circ} 56.4'W$ | 24 Apr 00 | 245 | 247 | 4 | 3579 | 1005 | | 91 | $4^{\circ} 0.0' \text{N}$ | 94° 56.6′W | 24 Apr 00 | 1116 | 178 | 1 | 3342 | 1002 | | 101 | 3° 37.3′N | 94° 56.1′W | 24 Apr 00 | 2156 | 212 | 10 | 3376 | 1003 | | 111 | 2° 59.7′N | $95^{\circ} 5.5' \text{W}$ | 25 Apr 00 | 746 | 256 | 4 | 3155 | 1003 | | 121 | $2^{\circ} 0.3' \text{N}$ | 95° 20.2′W | 25 Apr 00 | 2044 | 107 | 4 | 2879 | 1004 | | 131 | 1° 30.2′N | 95° 15.4′W | 26 Apr 00 | 140 | 105 | 3 | 2966 | 1005 | | 141 | 1° 0.3′N | 95° 11.3′W | 26 Apr 00 | 605 | 88 | 7 | 3491 | 1004 | | 151 | 0° 30.1′N | 95° 7.1′W | 26 Apr 00 | 1013 | 124 | 3 | 3284 | 1001 | | 161 | $0^{\circ} 1.6'S$
$0^{\circ} 29.8'S$ | 95° 2.1′W
95° 5.8′W | 26 Apr 00 | 1824 | 95 | 7 | 3311 | 1002 | | 171 | | 95° 5.8′W
95° 10.3′W | 26 Apr 00 | 2223 | 58 | 7 | 3373 | 1003 | | 181 | 0° 59.8′S
1° 29.6′S | 95 10.3 W
95° 14.3′W | 27 Apr 00 | 234 | 55
51 | 12 | 3310 | 1006 | | 191
201 | 1° 56.5′S | 95° 13.8′W | 27 Apr 00
27 Apr 00 | 639 1126 | 51
40 | $\frac{4}{1}$ | $3365 \\ 3386$ | $1002 \\ 3003$ | | $\frac{201}{202}$ | 1° 55.7′S | 95° 11.3′W | 27 Apr 00
27 Apr 00 | 1720 1737 | 83 | 1 | 2806 | 202 | | 202 | 3° 0.1′S | 95° 8.6′W | 28 Apr 00 | 114 | 168 | 5 | 3419 | 1002 | | $\frac{211}{221}$ | 4° 0.1′S | 95° 6.7′W | 28 Apr 00 | 823 | 156 | 5 | 3624 | 1002 | | $\frac{221}{231}$ | 5° 1.9′S | 95° 4.8′W | 28 Apr 00 | 2210 | 156 | 12 | 3833 | 1003 | | $\frac{231}{241}$ | 5° 59.8′S | 95° 4.8′W | 29 Apr 00 | 545 | 134 | 12 | 3896 | 1004 | | 251 | $7^{\circ} 0.7'S$ | 95° 5.2'W | 29 Apr 00 | 1415 | 125 | 12 | 4334 | 1003 | | 261 | 8° 1.8′S | $95^{\circ} \ \ 3.9'W$ | 30 Apr 00 | 407 | 130 | 11 | 3836 | 3004 | | 262 | 8° 2.5'S | $95^{\circ} 4.7'W$ | 30 Apr 00 | 1542 | 161 | 3 | 3798 | 202 | | 271 | 8° 1.4′S | $109^{\circ} 55.3'W$ | 4 May 00 | 1025 | 123 | 15 | 3500 | 1005 | | 281 | $7^{\circ} 0.1'S$ | $109^{\circ} 56.9' W$ | 4 May 00 | 1823 | 70 | 6 | 3582 | 1002 | | 291 | 6° $0.0'S$ | $109^{\circ} 58.7'W$ | 5 May 00 | 208 | 113 | 17 | 3645 | 1004 | | 301 | 5° 1.5'S | $109^{\circ} 58.6' W$ | 5 May 00 | 1324 | 118 | 15 | 3477 | 3005 | | 302 | $4^{\circ} 59.4'S$ | $109^{\circ} 59.4'W$ | 6 May 00 | 144 | 120 | 12 | 3611 | 202 | | 311 | $3^{\circ} 59.9'S$ | $109^{\circ} 58.1'W$ | 6 May 00 | 908 | 102 | 3 | 3888 | 1003 | | 321 | $2^{\circ} 59.9'S$ | $109^{\circ} 56.7'W$ | 6 May 00 | 1639 | 124 | 7 | 3957 | 1002 | | 331 | 2° 0.8'S | $109^{\circ} 55.2'W$ | 7 May 00 | 34 | 112 | 13 | 3984 | 1004 | | 341 | $1^{\circ} 29.6'S$ | $109^{\circ} \ 53.5'W$ | 7 May 00 | 434 | 100 | 8 | 3927 | 1003 | | 351 | $0^{\circ} 59.9'S$ | $109^{\circ} 52.1'W$ | 7 May 00 | 831 | 86 | 4 | 3878 | 1004 | | 361 | $0^{\circ} 29.8' S$ | $109^{\circ} 50.9' \text{W}$ | 7 May 00 | 1233 | 117 | 8 | 3858 | 1005 | | 371 | $0^{\circ} \ \ 3.1'S$ | $110^{\circ} 9.2' W$ | 8 May 00 | 1327 | 78 | 7 | 3788 | 3005 | | 372 | 0° 0.8'N | $110^{\circ} \ 1.1'W$ | 8 May 00 | 1751 | 200 | 3 | 3759 | 201 | | 381 | 0° 29.8′N | $110^{\circ} 5.3' \text{W}$ | 8 May 00 | 2249 | 117 | 5 | 3730 | 1002 | | 391 | 1° 0.0′N | $110^{\circ} 9.0' \text{W}$ | 9 May 00 | 306 | 137 | 5 | 3837 | 1005 | | 401 | 1° 30.2′N | $110^{\circ} \ 12.3' \text{W}$ | 9 May 00 | 726 | 153 | 8 | 3810 | 1003 | | 411 | 2° 3.5'N | 110° 16.6′W | 9 May 00 | 1329 | 159 | 8 | 3768 | 3003 | | 412 | 2° 7.3'N | 110° 17.1′W | 9 May 00 | 1743 | 133 | 8 | 3810 | 202 | | 421 | 2° 59.9′N | 110° 11.4′W | 9 May 00 | 2355 | 157 | 11 | 3767 | 1003 | | 431 | 3° 59.9′N | 110° 4.9′W | 10 May 00 | 705 | 174 | 9 | 3898 | 1006 | | 441 | 4° 57.5′N | 109° 58.3′W | 10 May 00 | 1358 | 179 | 9 | 3877 | 1003 | | 451 | $6^{\circ} 0.2' \text{N}$ | 110° 2.7′W | 11 May 00 | 931 | 186 | 9 | 3486 | 1001 | | 461 | $7^{\circ} 0.3' \text{N}$ | 110° 5.6′W | 11 May 00 | 1717 | 185 | 1 | 3727 | 1002 | | 471 | 8° 2.8′N | 110° 9.0′W | 12 May 00 | 354 | 354 | 12 | 3623 | 1003 | | 481 | 10° 0.0′N | 110° 35.9′W | 12 May 00 | 2042 | 27 | 12 | 3626 | 1006 | | 491
501 | 10° 59.8′N
12° 0.3′N | 110° 48.3′W
111° 1.7′W | 13 May 00 | 459 | 19 | 9
13 | 3916 | 1002 | | 501 | 12 U.5 N | 111° 1.7′W | 13 May 00 | 1253 | 31 | 13 | 3813 | 1002 | Figure 1k: GP3-00-KA cruise track and station locations. Table 1k: GP3-00-KA CTD Cast Summary. | Cast | Latitude | Longitude | Date | Time | W/D | W/S | Depth | Cast | |-------------------|---|--|------------------------|---------------------|-----------------|----------|----------------|----------------| | # | | | | | Т | (kts) | (m) | (db) | | 11 | $13^{\circ} \ 36.4' N$ | $156^{\circ} \ 12.6' \text{W}$ | 17 Jun 00 | 2001 | 40 | 8 | | 3503 | | 21 | 12° 0.2′N | 155° 51.3′W | 18 Jun 00 | 808 | 76 | 10 | 5142 | 1001 | | 31 | 11° 0.3′N | 155° 38.4′W | 18 Jun 00 | 1518 | 70 | 10 | 5224 5336 | 1003 | | 41 | 10° 0.1′N | 155° 26.1′W | | | | | | 1002 | | 51 | 9° 0.1′N | 155° 13.4′W | 19 Jun 00 | 532 | 43 | 5273 | 1002 | | | 61 | 7° 58.6′N | 155° 0.9′W | 19 Jun 00 | 1350 | 68 | 4 | 5147 | 3005 | | 62 | 7° 56.3′N | 155° $1.3'W$ | 19 Jun 00 | 2338 | 50 | 4 | 5134 | 202 | | 71 | $7^{\circ} 0.1'N$ | 154° 59.1′W | 20 Jun 00 | 551 | 70 | 11 | 4942 | 1002 | | 81 | $6^{\circ} 0.3' \text{N}$ | 154° 57.1′W | 20 Jun 00 | 1230 | 140
 10 | 4828 | 805 | | 91 | $5^{\circ} 0.5' \text{N}$ | 154° 55.5′W | 21 Jun 00 | 425 | 78 | 9 | 4594 | 1004 | | 101 | $4^{\circ} 0.2' \text{N}$ | 154° 55.5′W | 21 Jun 00 | 1117 | 95 | 7 | 4695 | 1002 | | 111 | $3^{\circ} 0.3' \text{N}$ | 154° 56.7′W | 21 Jun 00 | 1750 | 118 | 11 | 4803 | 1002 | | 121 | 2° 30.0′N | 154° 55.7′W | 21 Jun 00 | 2137 | 124 | 13 | 4832 | 1004 | | 131 | $2^{\circ} 0.7'N$ | 154° 56.3′W | 22 Jun 00 | 905 | 131 | 8 | 4688 | 1004 | | 141 | 1° 29.8′N | 154° 57.6′W | 22 Jun 00 | 1302 | 134 | 11 | 4663 | 1002 | | 151 | 1° 0.3′N | 154° 58.3′W | 22 Jun 00 | 1649 | 130 | 10 | 4758 | 1004 | | 161 | 0° 30.1′N | $155^{\circ} 0.2' \text{W}$ | 22 Jun 00 | 2034 | 119 | 9 | 4789 | 1003 | | 171 | $0^{\circ} 0.5' \text{N}$ | 155° 1.3′W | 23 Jun 00 | 2258 | 96 | 8 | 4690 | 1004 | | 181 | 0° 29.9′S | 154° 59.5′W | 23 Jun 00 | 635 | 80 | 12 | 4884 | 1004 | | 191 | 0° 59.9′S
1° 30.1′S | 154° 58.9′W | 23 Jun 00 | 1016 | 67 | 10 | 4743 | 1003 | | 201 | $1^{\circ} 30.1 \text{ S}$
$2^{\circ} 0.4' \text{S}$ | 154° 57.5′W
154° 57.0′W | 23 Jun 00 | 1345 | $\frac{52}{55}$ | 10 | 4875 | 1002 | | 211 | $2^{\circ} 29.7' S$ | 154° 57.2′W | 24 Jun 00 | 201 | | 11 | 4986 | 1002 | | 221 | 2 29.7 S
2° 59.9′S | 154 57.2 W
154° 59.1′W | 24 Jun 00 | 555 | 86 | 13 | 4963 | 1004 | | $231 \\ 241$ | 2 59.9 S
3° 59.7′S | 154 59.1 W
155° 1.6′W | 24 Jun 00
24 Jun 00 | 949 | 47 90 | 8 | 4906 | 1001 | | $\frac{241}{251}$ | 3 59.7 S
4° 59.3′S | 155° 1.6 W 155° $0.5' \text{W}$ | | 1639 | | 17 | 2397 | 1002 | | $\frac{251}{261}$ | 4 59.5 S
5° 59.9′S | $155^{\circ} 0.0^{\circ} W$ | 25 Jun 00
25 Jun 00 | 34
710 | 73
103 | 18
12 | $4769 \\ 5305$ | $1004 \\ 1003$ | | $\frac{201}{271}$ | 6° 59.7′S | 155° 1.5′W | 25 Jun 00
25 Jun 00 | 1359 | 90 | 10 | 5174 | 1003 1002 | | 281 | 8° 15.9′S | 155° 1.5 W
155° 0.6′W | 25 Jun 00
25 Jun 00 | $\frac{1339}{2207}$ | 90
70 | 13 | 5374 5335 | 1002 | | $\frac{261}{291}$ | 7° 56.6′S | 170° 0.0′W | 29 Jun 00 | 521 | 70
71 | 10 | 5346 | 4804 | | 301 | $7^{\circ} 0.0' S$ | 170° 0.0 W
170° 0.2′W | 29 Jun 00
29 Jun 00 | 1236 | 80 | 15 | 4741 | 1004 | | 311 | 5° 59.6′S | $170^{\circ} 0.2 \text{ W}$ $170^{\circ} 0.3' \text{W}$ | 29 Jun 00
29 Jun 00 | 1906 | 87 | 17 | 4806 | 1004 | | 321 | $5^{\circ} 0.6' S$ | $170^{\circ} 0.3 \text{ W}$
$170^{\circ} 0.1' \text{W}$ | 30 Jun 00 | 1122 | 87 | 15 | 5395 | 3004 | | 331 | 3° 59.8′S | $170^{\circ} 0.1 \text{ W}$
$170^{\circ} 1.9' \text{W}$ | 30 Jun 00 | 1853 | 75 | 21 | 5725 | 5514 | | 341 | 2° 59.9′S | $170^{\circ} 2.3' \text{W}$ | 1 Jul 00 | 801 | 82 | 15 | 5289 | 1002 | | 351 | 2° 29.8′S | $170^{\circ} 3.0' \text{W}$ | 1 Jul 00 | 1151 | 90 | 13 | 5417 | 1002 | | 361 | 2° 10.7′S | 170° 2.2′W | 1 Jul 00 | 1533 | 70 | 14 | 4968 | 3002 | | 371 | 1° 29.6′S | 169° 56.5′W | 2 Jul 00 | 545 | 97 | 18 | 5202 | 1003 | | 381 | 0° 59.6′S | 169° 52.7′W | 2 Jul 00 | 947 | 94 | 16 | 5630 | 1001 | | 391 | 0° 30.3′S | 169° 48.3′W | 2 Jul 00 | 1334 | 90 | 17 | 5600 | 1008 | | 401 | $0^{\circ} 1.2'S$ | $170^{\circ} 0.7' \text{W}$ | 3 Jul 00 | 1409 | 80 | 14 | 5587 | 4313 | | 402 | $0^{\circ} 0.3'S$ | 169° 44.4′W | 4 Jul 00 | 322 | 94 | 19 | 5421 | 5108 | | 411 | 0° 30.0′N | 169° 48.8′W | 4 Jul 00 | 1111 | 92 | 17 | 5433 | 1002 | | 421 | 1° 0.5′N | 169° 53.0′W | 4 Jul 00 | 1504 | 90 | 15 | 5559 | 1004 | | 431 | 1° 30.3′N | 169° 57.2′W | 4 Jul 00 | 1851 | 90 | 18 | 5527 | 1003 | | 441 | 2° 1.5'N | $170^{\circ} 2.8' \text{W}$ | 4 Jul 00 | 2318 | 103 | 24 | 5401 | 1050 | | 451 | 2° 30.2′N | 170° 1.1′W | 5 Jul 00 | 314 | 97 | 18 | 5336 | 1001 | | 461 | 3° 0.0′N | $170^{\circ} 0.3' \text{W}$ | 5 Jul 00 | 654 | 96 | 17 | 5471 | 1001 | | 471 | $4^{\circ} 0.1' N$ | $169^{\circ} 59.7'W$ | 5 Jul 00 | 1324 | 100 | 14 | 5414 | 1003 | | 481 | 5° 0.3′N 170° 0.3′W | | 6 Jul 00 | 358 | 88 | 15 | 5753 | 1003 | | 491 | | | 6 Jul 00 | 1114 | 55 | 12 | | 1003 | | 501 | | | 6 Jul 00 | 1742 | 70 | 13 | | 1004 | | 511 | | | 7 Jul 00 | 21 | 96 | 9 | 5545 | 1003 | | 521 | 7° 59.4′N | $179^{\circ} 53.7'W$ | 9 Jul 00 | 1353 | 0 | 0 | 5949 | 1002 | Figure 11: GP4-00-KA cruise track and station locations. Table 1l: GP4-00-KA CTD Cast Summary. | Cast
| Latitude | Longitude | Date | Time | W/D
T | W/S
(kts) | Depth (m) | Cast (db) | |-------------------|---|---|------------------------|--------------------|-------------------|-------------------|----------------|----------------| | | 7° 59.7′N | 1050 0 4/5 | 10 T 1 00 | 990 | | | . , | | | 11 | 7° 59.7′N
7° 0.0′N | 165° $6.4'E$ 165° $5.2'E$ | 19 Jul 00 | 330 | 137 | 7 | 5213 | 1002 | | 21 | $6^{\circ} 0.0 \text{ N}$ | 165° 3.4′E | 19 Jul 00 | 1008 | 103 | 12 | 5167 | 1001 | | 31 | $5^{\circ} 2.0' \text{N}$ | 165° 0.9′E | 19 Jul 00 | 1628 | 97 | 11 | 5013 | 1002 | | 41
51 | $\frac{5}{4^{\circ}} \frac{2.0 \text{ N}}{0.0' \text{N}}$ | 165° 0.9 E
165° 0.7′E | 20 Jul 00 | $\frac{520}{528}$ | 39 | 14 | $4779 \\ 4489$ | 1002 | | 61 | 2° 59.8′N | 165° 0.7 E
165° 0.3′ E | 21 Jul 00
21 Jul 00 | $\frac{328}{1207}$ | $\frac{196}{256}$ | $0 \\ 3$ | 4489 4252 | $1003 \\ 1002$ | | 71 | 2° 29.9′N | 164° 59.7′E | 21 Jul 00
21 Jul 00 | 1556 | $\frac{250}{157}$ | 3 | 4232 4121 | 1002 1003 | | 81 | 2° 29.9 N
1° 59.4′N | 165° 0.5′E | 21 Jul 00
21 Jul 00 | 2345 | 187 | 5 | 4121 4171 | 1003 1002 | | 91 | 1° 29.6′ N | 164° 59.6′E | 21 Jul 00
22 Jul 00 | 405 | 290 | 22 | $4171 \\ 4259$ | 1002 | | 101 | 0° 59.8′N | 165° 0.7′E | 22 Jul 00
22 Jul 00 | 812 | $\frac{230}{234}$ | 10 | 4330 | 1003 | | 111 | 0° 29.8′N | 165° 1.3′E | 22 Jul 00
22 Jul 00 | 1227 | $\frac{254}{257}$ | 8 | 4368 | 1001 | | 121 | $0^{\circ} 29.8 \text{ N}$
$0^{\circ} 2.5' \text{N}$ | $165^{\circ} 0.5' \text{E}$ | 23 Jul 00 | 504 | 178 | 2 | 4404 | 1002 | | 131 | $0^{\circ} 30.1' S$ | 164° 51.3′E | 23 Jul 00
23 Jul 00 | 922 | 97 | 3 | 4404 4450 | 1003 1002 | | 141 | 1° 0.0′S | 164° 42.9′E | 23 Jul 00
23 Jul 00 | 1325 | 85 | 5
5 | 4430 4417 | 1002 | | 151 | 1° 29.9′S | 164° 33.4′E | 23 Jul 00
23 Jul 00 | 1655 | 70 | 8 | 4421 | 179 | | 161 | 1° 55.4′S | 164° 24.1′E | 24 Jul 00 | $\frac{1033}{217}$ | 29 | 9 | 4435 | 1003 | | 171 | 2° 29.6′S | 164° 33.8′E | 24 Jul 00
24 Jul 00 | 645 | $\frac{23}{74}$ | 5 | 4466 | 1003 | | 181 | 2° 54.9′S | 164° 41.2′E | 24 Jul 00
24 Jul 00 | 1038 | 76 | 5 | 3953 | 1003 | | 191 | 3° 59.9′S | 164° 57.2′E | 24 Jul 00
24 Jul 00 | 1725 | 150 | 2 | 3182 | 1002 1002 | | 201 | 5° 0.8′S | 165° 12.6′E | 25 Jul 00 | 248 | 83 | 6 | 2516 | 1019 | | 211 | 5° 59.9′S | 165° 5.1′E | 25 Jul 00
25 Jul 00 | 940 | 86 | 6 | 3606 | 1003 | | $\frac{211}{221}$ | 6° 59.7′S | 164° 56.9′E | 25 Jul 00
25 Jul 00 | 1641 | 130 | 7 | 3717 | 1003 | | 231 | 8° 1.0′S | 164° 47.5′E | 26 Jul 00 | 607 | 132 | 9 | 3888 | 1001 | | $\frac{231}{241}$ | 7° 57.8′S | 179° 48.0′W | 30 Jul 00 | 441 | 117 | 11 | 5546 | 1002 | | 251 | 6° 59.6′S | 179° 50.9′W | 30 Jul 00 | 1101 | 116 | 13 | 5519 | 1002 | | 261 | 5° 59.9′S | 179° 53.6′W | 30 Jul 00 | 1729 | 116 | 14 | 5893 | 1002 | | 271 | 4° 56.3′S | 179° 56.8′W | 31 Jul 00 | 851 | 74 | 12 | 5670 | 1001 | | 281 | 3° 59.6′S | 179° 55.4′W | 31 Jul 00 | 1655 | 55 | 8 | 5587 | 1005 | | 291 | $3^{\circ} 0.5' S$ | 179° 55.4′W | 1 Aug 00 | 21 | 67 | $\frac{\circ}{2}$ | 5408 | 1004 | | 301 | $2^{\circ} \ 30.0' S$ | 179° 54.9′W | 1 Aug 00 | 440 | 61 | 7 | 5407 | 1003 | | 311 | 1° 58.9′S | 179° 53.6′W | 1 Aug 00 | 903 | 51 | 13 | 5336 | 1003 | | 321 | 1° 30.0′S | 179° 54.4′W | 1 Aug 00 | 1300 | 45 | 14 | 5253 | 1005 | | 331 | 0° 59.6′S | 179° 54.8′W | 1 Aug 00 | 1733 | 77 | 13 | 5351 | 1003 | | 341 | $0^{\circ} 29.8' S$ | 179° 54.8′W | 1 Aug 00 | 2140 | 72 | 14 | 4902 | 1004 | | 351 | $0^{\circ} 1.3' \text{N}$ | 179° 54.8′W | 2 Aug 00 | 206 | 67 | 14 | 5393 | 1002 | | 361 | 0° 30.1′N | $179^{\circ} 53.6' \text{W}$ | 2 Aug 00 | 610 | 80 | 13 | 5744 | 1004 | | 371 | $1^{\circ} 0.1'N$ | $179^{\circ} 52.3'W$ | 2 Aug 00 | 1017 | 61 | 9 | 5792 | 1005 | | 381 | $1^{\circ} 30.2' \text{N}$ | $179^{\circ} 49.5' \text{W}$ | 2 Aug 00 | 1437 | 54 | 16 | 5573 | 1003 | | 391 | 2° 1.2'N | $179^{\circ} 47.8' \text{W}$ | 3 Aug 00 | 305 | 83 | 10 | 5468 | 1002 | | 401 | $2^{\circ} 29.8' \text{N}$ | $179^{\circ} 49.0' \text{W}$ | 3 Aug 00 | 716 | 119 | 8 | 5313 | 1004 | | 411 | 3° 0.4'N | $179^{\circ} 58.5' \text{W}$ | 3 Aug 00 | 1119 | 120 | 8 | 4695 | 1002 | | 421 | 4° 0.3'N | $179^{\circ} 52.8' \text{W}$ | 3 Aug 00 | 1739 | 99 | 7 | 5760 | 1002 | | 431 | $5^{\circ} 0.3' N$ | $179^{\circ} 55.9' W$ | 4 Aug 00 | 840 | 29 | 5 | 5641 | 1001 | | 441 | 6° $0.4'N$ | $179^{\circ} 54.7' W$ | 4 Aug 00 | 1546 | 41 | 11 | 5594 | 1002 | | 451 | $7^{\circ} 0.3' \text{N}$ | $179^{\circ} 53.8' \text{W}$ | 4 Aug 00 | 2207 | 62 | 11 | 5882 | 1003 | | 461 | $7^{\circ} 59.7' N$ | $179^{\circ} 53.8' \text{W}$ | 5 Aug 00 | 535 | 78 | 14 | 5944 | 1002 | | 471 | 9° $0.2'N$ | $178^{\circ} \ 23.1'W$ | 5 Aug 00 | 1800 | 74 | 16 | 5954 | 1002 | | 481 | 10° $0.4'$ N | $176^{\circ} 55.3' \text{W}$ | 6 Aug 00 | 631 | 60 | 14 | 6068 | 1003 | | 491 | 01 11° 0.0′N 175° 24.1′W | | 6 Aug 00 | 1919 | 70 | 20 | 5439 | 1002 | | 501 | $12^{\circ} 0.0' \text{N}$ | $173^{\circ} 52.8' \text{W}$ | 7 Aug 00 | 913 | 67 | 17 | 5528 | 1003 | Figure 1m: GP5-00-KA cruise track and station locations. ${\bf Table~1m} \hbox{:}~ {\bf GP5\text{-}00\text{-}KA~CTD~Cast~Summary}.$ | Cast
| Latitude | Longitude | Date | Time V | | W/S
(kts) | Depth (m) | Cast (db) | |-----------------|----------------------------|----------------------------------|-------------------|--------|----------|--------------|-----------|-----------| | # 11 | 11° 25.1′N | 139° 44.0′W | 5 Sep 00 | 150 | T
229 | 13 | 5007 | 4004 | | 21 | $8^{\circ} 2.3' \text{N}$ | 139 44.0 W
124° 58.3′W | 8 Sep 00 |
2354 | 176 | 22 | 4656 | 1000 | | 31 | 6° 59.8′N | 124° 57.1′W | 9 Sep 00 | 953 | 175 | 18 | 4647 | 1000 | | 41 | 5° 59.8′N | 124° 52.8′W | 9 Sep 00 | 2010 | 165 | 2 | 1011 | 1014 | | 51 | 5° 5.0′N | 124° 50.5′W | 10 Sep 00 | 844 | 162 | 17 | 4360 | 4002 | | 52 | 5° 5.9′N | 124° 53.4′W | 10 Sep 00 | 2326 | 160 | 16 | 4367 | 201 | | 61 | 4° 0.5′N | 124° 56.8′W | 11 Sep 00 | 822 | 117 | 11 | 4500 | 1001 | | 71 | 3° 0.5′N | 125° 1.7′W | 11 Sep 00 | 1732 | 187 | 11 | 4456 | 1003 | | 81 | 1° 59.8′N | $125^{\circ} - 6.6' \text{W}$ | 12 Sep 00 | 826 | 132 | 15 | 4718 | 4003 | | 82 | 2° 0.8'N | $125^{\circ} 8.2'W$ | 13 Sep 00 | 129 | 140 | 17 | 4685 | 201 | | 91 | $0^{\circ} 59.8' \text{N}$ | $124^{\circ} 47.2' \text{W}$ | 13 Sep 00 | 1038 | 134 | 15 | 4611 | 1002 | | 101 | $0^{\circ} 13.6' S$ | $124^{\circ} \ 23.8' \text{W}$ | 13 Sep 00 | 2034 | 107 | 19 | 4044 | 1003 | | 111 | $1^{\circ} 0.1'S$ | $124^{\circ} \ 36.6' \mathrm{W}$ | 14 Sep 00 | 157 | 91 | 14 | 4704 | 1005 | | 121 | $1^{\circ} 30.3'S$ | $124^{\circ} \ 45.8' \mathrm{W}$ | 14 Sep 00 | 602 | 89 | 16 | 4585 | 1003 | | 131 | 2° 0.6'S | $124^{\circ} 53.2' W$ | 14 Sep 00 | 1034 | 80 | 12 | 4727 | 4005 | | 132 | 2° 3.3'S | $124^{\circ} 54.4' W$ | 14 Sep 00 | 2321 | 120 | 16 | 4825 | 202 | | 141 | $2^{\circ} 30.2'S$ | $124^{\circ} 54.9' W$ | 15 Sep 00 | 306 | 70 | 8 | 4585 | 1003 | | 151 | $2^{\circ} 59.8'S$ | $124^{\circ} 54.4'W$ | 15 Sep 00 | 651 | 78 | 17 | 4620 | 1003 | | 161 | $3^{\circ} 59.9' S$ | $124^{\circ} 55.5' \text{W}$ | 15 Sep 00 | 1347 | 110 | 13 | 4518 | 1010 | | 171 | 5° $1.8'S$ | $124^{\circ} 55.7' W$ | 15 Sep 00 | 2108 | 96 | 12 | 4549 | 1000 | | 181 | $5^{\circ} 59.7'S$ | $124^{\circ} 57.4'W$ | 16 Sep 00 | 407 | 94 | 15 | 4564 | 1001 | | 191 | $6^{\circ} 59.8'S$ | $124^{\circ} 58.9' W$ | 16 Sep 00 | 1146 | 187 | 17 | 4768 | 1002 | | 201 | $7^{\circ} 58.5'S$ | $125^{\circ} 1.3' \text{W}$ | 17 Sep 00 | 445 | 128 | 16 | 4506 | 1004 | | 211 | 5° $0.6'S$ | $139^{\circ} \ 53.4'W$ | 20 Sep 00 | 1542 | 96 | 12 | 4355 | 1002 | | 221 | $4^{\circ} 0.1'S$ | $139^{\circ} 55.6' W$ | 21 Sep 00 | 657 | 146 | 14 | 4509 | 1003 | | 231 | $2^{\circ} 59.6'S$ | $139^{\circ} 56.1'W$ | 21 Sep 00 | 1352 | 117 | 11 | 4438 | 1003 | | 241 | $2^{\circ} 29.7'S$ | $139^{\circ} 56.6' \text{W}$ | 21 Sep 00 | 1756 | 91 | 13 | 4408 | 1003 | | 251 | $1^{\circ} 59.0' S$ | $139^{\circ} 57.0' \text{W}$ | 22 Sep 00 | 531 | 108 | 13 | 4301 | 1002 | | 261 | $0^{\circ} 59.6' S$ | $140^{\circ} 0.3' \text{W}$ | 22 Sep 00 | 1211 | 89 | 12 | 4265 | 1005 | | 271 | 0° 6.3'N | $139^{\circ} 51.4'W$ | 23 Sep 00 | 806 | 86 | 14 | 4304 | 4004 | | 272 | $0^{\circ} 1.9' \text{N}$ | $139^{\circ} \ 53.3'W$ | $23~{\rm Sep}~00$ | 1856 | 110 | 14 | 4350 | 204 | | 281 | 0° 30.6′N | $140^{\circ} 1.0' \text{W}$ | $24~{\rm Sep}~00$ | 19 | 116 | 16 | 4352 | 1007 | | 291 | 1° 0.6′N | 139° 59.9′W | 24 Sep 00 | 350 | 109 | 12 | 4298 | 1001 | | 301 | 1° 30.3′N | $140^{\circ} 0.0' \text{W}$ | 24 Sep 00 | 735 | 108 | 13 | 4427 | 1004 | | 311 | $2^{\circ} 0.7' \text{N}$ | 139° 59.1′W | 24 Sep 00 | 1111 | 106 | 12 | 4372 | 1006 | | 321 | 2° 30.6′N | 139° 59.7′W | 24 Sep 00 | 1500 | 129 | 12 | 4377 | 1003 | | 331 | $3^{\circ} 0.4' \text{N}$ | 139° 59.3′W | 24 Sep 00 | 1827 | 114 | 12 | 4293 | 1004 | | 341 | 4° 0.3′N | 139° 59.0′W | 25 Sep 00 | 45 | 94 | 12 | 4336 | 1002 | | 351 | 5° 2.8′N | 139° 59.1′W | 25 Sep 00 | 814 | 158 | 12 | 4457 | 1004 | | 361 | 5° 59.8′N | 140° 2.1′W | 25 Sep 00 | 1450 | 142 | 12 | 4818 | 1004 | | 371 | 7° 0.0′N | 140° 6.1′W | 25 Sep 00 | 2216 | 170 | 10 | 4990 | 1004 | | 381 | 7° 59.9′N | 140° 11.4′W | 26 Sep 00 | 549 | 29 | 4 | 5145 | 1004 | | 391 | 9° 0.8′N | 140° 15.1′W | 26 Sep 00 | 1434 | 18 | 16 | 4826 | 4005 | | 401 | 10° 0.0′N | 141° 44.9′W | 27 Sep 00 | 1010 | 83 | 11 | 5040 | 1004 | | 411 | 11° 0.0′N | 143° 13.9′W | 27 Sep 00 | 2112 | 99 | 7 | 5329 | 1002 | | 421 | $12^{\circ} 0.2' \text{N}$ | $144^{\circ} \ 46.3'W$ | 28 Sep 00 | 822 | 69 | 13 | 5240 | 1002 | Figure 1n: GP6-00-KA cruise track and station locations. Table 1n: GP6-00-KA CTD Cast Summary. | Cast | Latitude | Longitude | Date | Time | W/D | W/S | Depth | Cast | |------|------------------------------|------------------------------|--------------------------|------|-----|-------|-------|------| | # | | | | | Т | (kts) | (m) | (db) | | 11 | $11^{\circ} 59.6' \text{N}$ | $155^{\circ} 52.1'W$ | 17 Oct 00 | 1209 | 90 | 20 | 5220 | 1004 | | 21 | $11^{\circ} 0.5' \text{N}$ | $155^{\circ} 39.6' W$ | 17 Oct 00 | 1934 | 62 | 15 | 5196 | 1003 | | 31 | 10° $0.5'$ N | $155^{\circ} 26.7'W$ | 18 Oct 00 | 326 | 50 | 13 | 5557 | 1003 | | 41 | 9° $0.1'N$ | $155^{\circ} \ 13.3'W$ | 18 Oct 00 | 1052 | 121 | 7 | 5278 | 1002 | | 51 | $7^{\circ} 59.6' \mathrm{N}$ | $155^{\circ} 0.4'W$ | 18 Oct 00 | 1900 | 102 | 5 | 5207 | 4203 | | 61 | $7^{\circ} 0.3' \text{N}$ | $154^{\circ} 58.1'W$ | 19 Oct 00 | 425 | 124 | 5 | 5150 | 1004 | | 71 | 6° $0.0'$ N | $154^{\circ} 56.5' \text{W}$ | 19 Oct 00 | 1120 | 138 | 4 | 4824 | 1001 | | 81 | $5^{\circ} 1.0' \text{N}$ | $154^{\circ} 55.0' \text{W}$ | 19 Oct 00 | 1817 | 135 | 14 | 4596 | 1002 | | 91 | $3^{\circ} 59.8' \text{N}$ | $154^{\circ} 56.3'W$ | 20 Oct 00 | 201 | 115 | 18 | 4700 | 1003 | | 101 | 3° $0.1'N$ | $154^{\circ} 56.5' \text{W}$ | 20 Oct 00 | 845 | 98 | 24 | 4798 | 1003 | | 111 | 2° 1.6'N | $154^{\circ} 57.4'W$ | 20 Oct 00 | 1536 | 107 | 20 | 4879 | 1006 | | 121 | $1^{\circ} 29.2' N$ | $154^{\circ} 58.4'W$ | 20 Oct 00 | 2009 | 104 | 24 | 4647 | 1003 | | 131 | 1° 0.6'N | $155^{\circ} 0.4' \text{W}$ | 21 Oct 00 | 224 | 101 | 17 | | 1003 | | 141 | $0^{\circ} \ 30.0' \text{N}$ | $155^{\circ} 0.6' \text{W}$ | 21 Oct 00 | 819 | 89 | 18 | 4761 | 1002 | | 151 | 0° 7.6'N | $155^{\circ} 2.3' \text{W}$ | 21 Oct 00 | 1407 | 83 | 19 | 4683 | 1002 | | 161 | 0° 29.6′S | 154° 58.8′W | 22 Oct 00 | 612 | 88 | 15 | 4882 | 1004 | | 171 | $0^{\circ} 59.3'S$ | 154° 57.9′W | $22 \ \mathrm{Oct} \ 00$ | 1031 | 105 | 17 | 4736 | 1003 | | 181 | $1^{\circ} 58.9'S$ | 154° 56.1′W | 22 Oct 00 | 1742 | 91 | 19 | 5076 | 1003 | | 191 | $2^{\circ} 29.8'S$ | 154° 58.6′W | 22 Oct 00 | 2213 | 96 | 16 | 5012 | 1012 | | 201 | $2^{\circ} 59.8' S$ | 154° 59.2′W | 23 Oct 00 | 323 | 92 | 17 | 5095 | 1003 | | 211 | $3^{\circ} 59.4'S$ | 155° $1.9'W$ | 23 Oct 00 | 1023 | 97 | 14 | 4865 | 1002 | | 221 | 4° 58.3′S | 154° 59.4′W | 23 Oct 00 | 1713 | 69 | 13 | 5356 | 1004 | | 231 | 5° 59.9′S | 154° 59.7′W | 24 Oct 00 | 853 | 76 | 17 | 5266 | 1002 | | 241 | 6° 59.7′S | $155^{\circ} 0.4' \text{W}$ | 24 Oct 00 | 1527 | 62 | 12 | 5261 | 1004 | | 251 | 8° 15.9′S | 155° $1.3'W$ | 25 Oct 00 | 721 | 92 | 17 | 5344 | 1002 | | 261 | 7° 58.8′S | $170^{\circ} 3.0' \text{W}$ | 29 Oct 00 | 239 | 83 | 10 | 5375 | 1003 | | 271 | 6° 59.7′S | $170^{\circ} 0.7' \text{W}$ | 29 Oct 00 | 938 | 87 | 13 | 4731 | 1004 | | 281 | 5° 59.6′S | $170^{\circ} 0.6' \text{W}$ | 29 Oct 00 | 1624 | 65 | 13 | 4928 | 1002 | | 291 | $5^{\circ} 0.8'S$ | 170° $1.4'W$ | 29 Oct 00 | 2331 | 66 | 10 | 5426 | 1004 | | 301 | 3° 59.5′S | 170° $1.6'W$ | 30 Oct 00 | 638 | 59 | 7 | 5757 | 1003 | | 311 | 2° 59.7′S | $170^{\circ} 2.5' \text{W}$ | 30 Oct 00 | 1314 | 72 | 8 | 5682 | 1003 | | 321 | 2° 9.4′S | 170° 1.9′W | 31 Oct 00 | 323 | 79 | 11 | 4951 | 1004 | | 331 | 1° 29.7′S | 170° 1.0′W | 31 Oct 00 | 825 | 53 | 10 | 5590 | 1004 | | 341 | 0° 59.6′S | 170° 3.7′W | 31 Oct 00 | 1219 | 44 | 10 | 5368 | 1004 | | 351 | 0° 29.7′S | 170° 2.8′W | 31 Oct 00 | 1600 | 101 | 7 | 5609 | 1002 | | 361 | $0^{\circ} 2.2'S$ | 170° 3.7′W | 1 Nov 00 | 615 | 106 | 9 | 5566 | 601 | | 371 | 0° 30.0′N | 170° 3.1′W | 1 Nov 00 | 945 | 113 | 12 | 5598 | 1003 | | 381 | 0° 59.9′N | $170^{\circ} 3.0' \text{W}$ | 1 Nov 00 | 1330 | 129 | 9 | 5469 | 1004 | | 391 | 1° 30.1′N | 170° 3.1′W | 1 Nov 00 | 1707 | 129 | 11 | 5503 | 1002 | | 401 | 2° 0.9′N | 170° $3.5'W$ | 2 Nov 00 | 611 | 110 | 11 | 5400 | 1003 | | 411 | 2° 29.8′N | 170° 2.9′W | 2 Nov 00 | 1015 | 126 | 15 | 5325 | 1003 | | 421 | 2° 59.8′N | 170° 2.7′W | 2 Nov 00 | 1416 | 137 | 18 | 5451 | 1003 | | 431 | 3° 59.9′N | $170^{\circ} 0.3' \text{W}$ | 2 Nov 00 | 2101 | 128 | 17 | 5672 | 1002 | | 441 | 4° 59.3′N | 169° 59.6′W | 3 Nov 00 | 356 | 183 | 11 | 5312 | 1002 | | 451 | 6° 0.0′N | 169° 59.2′W | 3 Nov 00 | 1035 | 67 | 12 | 5410 | 1003 | | 461 | 6° 59.9′N | $170^{\circ} 0.6' \text{W}$ | 3 Nov 00 | 1707 | 38 | 13 | 5921 | 1002 | | 471 | 7° 58.4′N | 170° 1.2′W | 4 Nov 00 | 819 | 73 | 14 | 5530 | 1002 | | 481 | $8^{\circ} 0.7' \text{N}$ | 179° 51.7′W | 6 Nov 00 | 2310 | 55 | 11 | 5927 | 4102 | Figure 10: GP7-00-RB cruise track and station locations. Table 1o: GP7-00-RB CTD Cast Summary. | Cast | Latitude | Longitude | Date | Time | W/D | W/S | Depth | Cast | |------|------------------------------|----------------------------------|-------------|------|-----|-------|-------|------| | # | | | | | Т | (kts) | (m) | (db) | | 11 | 8° 3.2′N | 110° 10.2′W | 22 Oct 00 | 806 | 250 | 8 | 4280 | 4002 | | 21 | $7^{\circ} 0.0' \text{N}$ | 111° 38.9′W | 23 Oct 00 | 416 | 190 | 13 | 4285 | 1002 | | 31 | 6° 0.0′N | 112° 59.0′W | 23 Oct 00 | 1327 | 180 | 16 | 4007 | 1002 | | 41 | 5° 10.6′N | 113° 54.3′W | 23 Oct 00 | 2325 | 166 | 6 | 3914 | 1001 | | 51 | 4° 0.0′N | $112^{\circ} \ 27.4'W$ | 24 Oct 00 | 916 | 160 | 12 | 3922 | 1002 | | 61 | $3^{\circ} 0.0' \text{N}$ | 111° 13.6′W | 24 Oct 00 | 1801 | 165 | 18 | 3790 | 1003 | | 71 | 2° 29.8′N | $110^{\circ} \ 37.2' \mathrm{W}$ | 24 Oct 00 | 2311 | 150 | 18 | 3726 | 1000 | | 81 | $2^{\circ} 0.9' \text{N}$ | $110^{\circ} 2.2' \text{W}$ | 25 Oct 00 | 1049 | 140 | 16 | 3718 | 3002 | | 91 | 1° 30.0′N | $110^{\circ} 0.0' \text{W}$ | 25 Oct 00 | 1505 | 140 | 17 | 3778 | 1001 | | 101 | 1° 0.1′N | $110^{\circ} 0.0' \text{W}$ | 25 Oct 00 | 1840 | 150 | 16 | 3811 | 1008 | | 111 | $0^{\circ} 29.6' \text{N}$ | $110^{\circ} \ 2.0' \text{W}$ | 25 Oct 00 | 2210 | 160 | 15 | 3807 | 1002 | |
121 | 0° 8.0'N | $110^{\circ} \ \ 3.5'W$ | 26 Oct 00 | 714 | 130 | 8 | 3815 | 3252 | | 131 | $0^{\circ} \ 30.0' S$ | $110^{\circ} 0.2' \text{W}$ | 27 Oct 00 | 544 | 105 | 9 | 3801 | 1002 | | 141 | $1^{\circ} 59.4'S$ | $110^{\circ} 0.8' \text{W}$ | 28 Oct 00 | 137 | 120 | 12 | 3964 | 3252 | | 151 | $2^{\circ} 30.0' S$ | $110^{\circ} 0.4' \text{W}$ | 28 Oct 00 | 541 | 115 | 14 | 3930 | 1003 | | 161 | $2^{\circ} 59.9'S$ | $110^{\circ} 0.2' \text{W}$ | 28 Oct 00 | 909 | 105 | 13 | 3783 | 1004 | | 171 | 4° $0.0'S$ | $110^{\circ} 0.1'W$ | 28 Oct 00 | 1458 | 90 | 12 | 3824 | 1002 | | 181 | $5^{\circ} 1.2'S$ | $109^{\circ} 59.9' W$ | 28 Oct 00 | 2152 | 115 | 15 | 3578 | 3251 | | 191 | 6° $0.0'S$ | $109^{\circ} 58.6' \text{W}$ | 29 Oct 00 | 349 | 125 | 15 | 3801 | 1000 | | 201 | 7° 0.0'S | $109^{\circ} 57.0' \text{W}$ | 29 Oct 00 | 929 | 125 | 12 | 3512 | 1001 | | 211 | $8^{\circ} 0.0' S$ | $109^{\circ} 58.8' \text{W}$ | 30 Oct 00 | 630 | 125 | 15 | 3422 | 3154 | | 221 | $7^{\circ} 59.6' S$ | 95° $5.2'W$ | 3 Nov 00 | 1023 | 110 | 13 | 3810 | 3252 | | 231 | $6^{\circ} 59.9'S$ | $95^{\circ} 4.9' \text{W}$ | 3 Nov 00 | 1640 | 100 | 13 | 3921 | 1005 | | 241 | $5^{\circ} 59.9'S$ | $95^{\circ} 5.0' \text{W}$ | 3 Nov 00 | 2259 | 125 | 12 | 3899 | 1003 | | 251 | $4^{\circ} 59.4'S$ | $95^{\circ} 5.1'W$ | 4 Nov 00 | 500 | 135 | 12 | 3783 | 3254 | | 261 | $3^{\circ} 59.9'S$ | $95^{\circ} 7.3' \text{W}$ | 4 Nov 00 | 1107 | 130 | 10 | 3596 | 1003 | | 271 | 3° $0.0'S$ | $95^{\circ} 9.6' \text{W}$ | 4 Nov 00 | 1640 | 135 | 11 | 3570 | 1002 | | 281 | $2^{\circ} \ 30.0' S$ | $95^{\circ} \ 10.7' W$ | 4 Nov 00 | 2001 | 130 | 13 | 3445 | 1003 | | 291 | $1^{\circ} 58.1'S$ | $95^{\circ} 11.7' W$ | 5 Nov 00 | 726 | 155 | 8 | 3398 | 3253 | | 301 | $1^{\circ} 30.0' S$ | $95^{\circ} \ 13.7' \text{W}$ | 5 Nov 00 | 1319 | 155 | 9 | 3372 | 1000 | | 311 | $1^{\circ} 0.0'S$ | $95^{\circ} \ 15.6' \text{W}$ | 5 Nov 00 | 1641 | 165 | 8 | 2942 | 1002 | | 321 | $0^{\circ} 29.9'S$ | $95^{\circ}\ 17.5'W$ | 5 Nov 00 | 2001 | 160 | 13 | 3309 | 1002 | | 331 | 0° 4.2'N | $95^{\circ} 21.8' \text{W}$ | 6 Nov 00 | 350 | 160 | 13 | 3278 | 3252 | | 341 | $0^{\circ} 30.3' \text{N}$ | $95^{\circ} 4.0' \text{W}$ | 7 Nov 00 | 127 | 145 | 13 | 3304 | 1002 | | 351 | 1° $0.0'$ N | $95^{\circ} 11.8' \text{W}$ | 7 Nov 00 | 456 | 150 | 15 | 3122 | 1002 | | 361 | $1^{\circ} 30.0' \text{N}$ | $95^{\circ} \ 19.5' \text{W}$ | 7 Nov 00 | 821 | 160 | 10 | 2869 | 1002 | | 371 | 2° 0.5'N | $94^{\circ} 59.4' W$ | 8 Nov 00 | 326 | 170 | 11 | 3044 | 2902 | | 381 | $2^{\circ} 30.1' \text{N}$ | $94^{\circ} 58.4' \text{W}$ | 8 Nov 00 | 722 | 175 | 9 | 2617 | 1003 | | 391 | 3° 0.0'N | $94^{\circ} 57.5' \text{W}$ | 8 Nov 00 | 1042 | 195 | 7 | 2758 | 1001 | | 401 | $3^{\circ} 39.7' N$ | $94^{\circ} 56.8' \text{W}$ | 8 Nov 00 | 1612 | 205 | 12 | 3222 | 3052 | | 411 | 5° $5.9'N$ | $95^{\circ} 0.0' \text{W}$ | 9 Nov 00 | 517 | 210 | 13 | 3524 | 3102 | | 421 | 6° $0.0'$ N | $94^{\circ} 58.7' W$ | 9 Nov 00 | 1255 | 230 | 13 | 3238 | 1001 | | 431 | 7° 0.0'N | $94^{\circ} 57.2' \text{W}$ | 9 Nov 00 | 1821 | 240 | 14 | 3706 | 1001 | | 441 | 8° 4.4′N | $94^{\circ} \ 53.6' \text{W}$ | 10 Nov 00 | 412 | 285 | 12 | 3639 | 3077 | | 451 | $9^{\circ} 0.1'N$ | $94^{\circ} 59.6' W$ | 11 Nov 00 | 230 | 285 | 5 | 3554 | 1001 | | 461 | $10^{\circ} \ 2.0' \text{N}$ | $95^{\circ} 1.7' \text{W}$ | 11 Nov 00 | 846 | 270 | 3 | 3857 | 3002 | | 471 | $11^{\circ} 0.0' \text{N}$ | $94^{\circ} 54.8' \text{W}$ | 12 Nov 00 | 335 | 0 | 0 | 3976 | 1000 | | 482 | $12^{\circ} \ \ 3.3' N$ | $94^{\circ} 58.8' \text{W}$ | 12 Nov 00 | 2300 | 0 | 0 | 4094 | 3563 | Figure 1p: GP8-00-KA cruise track and station locations. Table 1p: GP8-00-KA CTD Cast Summary. | Cast
| Latitude | Longitude | Date | Time | W/D
T | W/S
(kts) | Depth (m) | Cast (db) | |-----------|---|--|------------------------|--------------|------------------|--------------|----------------|----------------| | | 7° 59.5′N | 165° 8.3′E | 1.C. N 00 | 0257 | | | | | | 11 | 7° 0.3′N | 165° 8.3′E
165° 5.3′E | 16 Nov 00 | 2357 | 61 | 15 | 5212 | 1001 | | 21
31 | $6^{\circ} 0.1' \text{N}$ | 165° 3.2′E | 17 Nov 00
17 Nov 00 | 727 | 77
124 | 20 | 5168 | 1002 | | | $5^{\circ} 1.4' \text{N}$ | 165° 1.1′E | | 1431 | 124 | 13 | 5257 | 1001 | | 41 | $\frac{5}{4^{\circ}} \frac{1.4 \text{ N}}{0.6' \text{N}}$ | | 18 Nov 00 | 352 | 126 | 18 | 4774 | 1004 | | 51 | $3^{\circ} 0.4' \text{N}$ | 165° 0.5′E
164° 59.6′E | 18 Nov 00 | 1204 | 74
73 | 12 | 4495 | 1003 | | 61
71 | $3^{\circ} 0.4 \text{ N}$
$2^{\circ} 30.0' \text{N}$ | 164° 59.6′E | 18 Nov 00
19 Nov 00 | $1957 \\ 15$ | 73
71 | 9
70 | $4227 \\ 4120$ | $1003 \\ 1001$ | | 81 | 2° 50.0 N
1° 59.7′N | 164° 59.8′E | 19 Nov 00
19 Nov 00 | | 62 | | | | | | | 164° 59.8 E
164° 59.6′E | | 455 | | 4 | 4171 | 1004 | | 91 | | 164° 59.6′E | 19 Nov 00 | 857 | 76
= 4 | 3 | 4258 | 1003 | | 101 | | | 19 Nov 00 | 1257 | 54
86 | 2 | 4328 | 1001 | | 111 | $0^{\circ} 29.9' \text{N}$
$0^{\circ} 1.9' \text{N}$ | $165^{\circ} 0.0' \text{E}$
$165^{\circ} 2.3' \text{E}$ | 19 Nov 00 | 1649 | 86 | 1 | 4365 | 1004 | | 121 | 0° 1.9 N
0° 30.0′S | | 20 Nov 00 | 933 | 359 | 4 | 4407 | 1004 | | 131 | | 164° 51.5′E | 20 Nov 00 | 1348 | 327 | 5 | 4434 | 1002 | | 141 | 1° 0.5′S
1° 30.0′S | 164° 41.2′E
164° 32.4′E | 20 Nov 00 | 1736 | 300 | 4 | 4417 | 1002 | | 151 | | | 20 Nov 00 | 2136 | 328 | 2 | 4420 | 1003 | | 161 | 1° 56.1′S | 164° 25.4′E | 21 Nov 00 | 114 | 998 | 3 | 4432 | 1003 | | 171 | 2° 29.6′S | 164° 34.2′E | 21 Nov 00 | 530 | 169 | 6 | 4465 | 1003 | | 181 | 3° 0.0′S | 164° 40.7′E | 21 Nov 00 | 919 | 159 | 8 | 4073 | 1002 | | 191 | 3° 59.9′S | 164° 56.5′E | 21 Nov 00 | 1608 | 55 | 3 | 4449 | 1003 | | 201 | 5° 0.7′S | 165° 12.3′E | 22 Nov 00 | 332 | 84 | 6 | 2556 | 1002 | | 211 | 5° 59.9′S | 165° 3.8′E | 22 Nov 00 | 1021 | 157 | 10 | 3600 | 1003 | | 221 | 6° 59.9′S | 164° 56.0′E | 22 Nov 00 | 1701 | 116 | 5 | 3739 | 1004 | | 231 | 8° 2.4′S | 164° 47.9′E | 23 Nov 00 | 37 | 169 | 4 | 3892 | 1001 | | 241 | 7° 58.8′S | 179° 48.6′W | 27 Nov 00 | 618 | 61 | 11 | 5550 | 1003 | | 251 | 7° 0.0′S | 179° 50.5′W | 27 Nov 00 | 1321 | 44 | 14 | 5440 | 1002 | | 261 | 5° 59.7′S | 179° 53.4′W | 27 Nov 00 | 2009 | 11 | 20 | 5076 | 1004 | | 271 | 4° 56.5′S | 179° 56.8′W | 28 Nov 00 | 326 | 49 | 18 | 5614 | 1002 | | 281 | 4° 0.0′S | 179° 55.1′W | 28 Nov 00 | 1037 | 69
76 | 12 | 5614 | 1005 | | 291 | 2° 59.6′S | 179° 54.7′W | 28 Nov 00 | 1741 | 76 | 19 | 5456 | 1003 | | 301 | 2° 30.0′S | 179° 54.4′W | 28 Nov 00 | 2131 | 78
50 | 18 | F 000 | 1003 | | 311 | 1° 59.7′S | 179° 53.1′W | 29 Nov 00 | 923 | 58 | 18 | 5332 | 1002 | | 321 | 1° 29.9′S | 179° 54.4′W | 29 Nov 00 | 1347 | 76 | 19 | 5239 | 1003 | | 331 | 0° 59.6′S | 179° 55.1′W | 29 Nov 00 | 1741 | 80 | 16 | 5756 | 1004 | | 341 | 0° 30.0′S | 179° 55.7′W | 29 Nov 00 | 2141 | 69
5 0 | 21 | | 1004 | | 351 | $0^{\circ} 2.0' \text{S}$ | 179° 55.7′W | 30 Nov 00 | 858 | 79 | 18 | F 700 | 1004 | | 361 | 0° 30.1′N | 179° 54.4′W | 30 Nov 00 | 1304 | 94 | 16 | 5739 | 1002 | | 371 | 1° 0.2′N | 179° 52.1′W | 30 Nov 00 | 1659 | 105 | 19 | 5562 | 1003 | | 381 | 1° 29.9′N | 179° 50.4′W | 30 Nov 00 | 2057 | 99 | 18 | ¥ 400 | 1001 | | 391 | $2^{\circ} 3.1'N$ | 179° 48.4′W | 1 Dec 00 | 208 | 90 | 13 | 5463 | 4005 | | 401 | 2° 30.0′N | 179° 49.3′W | 1 Dec 00 | 629 | 77 | 15 | 5332 | 1003 | | 411 | 2° 59.9′N | 179° 50.2′W | 1 Dec 00 | 1014 | 108 | 15 | | 1002 | | 421 | 4° 0.3′N | 179° 51.8′W | 1 Dec 00 | 1658 | 108 | 20 | | 1004 | | 431 | 4° 58.4′N | 179° 54.1′W | 1 Dec 00 | 2334 | 115 | 17 | ¥000 | 1003 | | 441 | 5° 59.9′N | 179° 53.2′W | 2 Dec 00 | 727 | 132 | 16 | 5382 | 1006 | | 451 | 7° 0.1′N | 179° 52.2′W | 2 Dec 00 | 1440 | 107 | 15 | 5754 | 1016 | | 461 | 8° 0.1′N | 179° 51.5′W | 2 Dec 00 | 2124 | 100 | 6 | 5948 | 1003 | | 471 | 8° 59.9′N | 179° 25.2′W | 3 Dec 00 | 843 | 76 | 21 | 5792 | 1007 | | 481 | $10^{\circ} 0.0' \text{N}$ | 176° 59.7′W | 3 Dec 00 | 2203 | 67 | 23 | 6001 | 1002 | | 491 | 11° 0.1′N | 175° 33.0′W | 4 Dec 00 | 1109 | 60 | 14 | 5485 | 1007 | | 501 | $12^{\circ} 0.1' \text{N}$ | $174^{\circ} 6.7'W$ | 4 Dec 00 | 2338 | 52 | 21 | 5654 | 1004 | ${\bf Table~2:~Drift~and~viscous~heating~corrections~for~CTD~temperature~calibrations.}$ | | Temp. | Drift | Viscous Heat | |--------|--------|----------------------|----------------------| | | Sensor | Correction | Correction | | Cruise | S/N | $^{\circ}\mathrm{C}$ | $^{\circ}\mathrm{C}$ | | GP199 | 2026 | 0.0009 | -0.0006 | | GP299 | 2026 | -0.0007 | -0.0006 | | GP399 | 2026 | -0.0004 | -0.0006 | | GP499 | 2027 | 0.0009 | -0.0006 | | GP599 | 2027 | 0.0010 | -0.0006 | | GP799 | 2027 | 0.0011 | -0.0006 | | GP899 | 1455 | 0.0000 | -0.0006 | | GP999 | 2027 | 0.0012 | -0.0006 | | GP100 | 2027 | 0.0014 | -0.0006 | | GP200 | 2027 | 0.0004 | -0.0006 | | GP300 | 2027 | 0.0001 | -0.0006 | | GP400 | 2027 | 0.0002 | -0.0006 | | GP500 | 2027 | 0.0003 | -0.0006 | | GP600 | 2027 | 0.0004 | -0.0006 | | GP700 | 1370 | 0.0003 | -0.0006 | | GP800 | 2027 | 0.0005 | -0.0006 | ${\bf Table~3:~Station~groupings~for~CTD~conductivity~calibrations.}$ | | | Maximum | Fit Slope | 0.9999999 | 1.0003050 | 1.0003073 | 0.9999738 | 1.0001378 | 1.0001150 | 1.0004461 | 1.0000982 | 1.0001391 | 1.0000325 | 1.0000580 | 1.0001711 | 1.0000788 | 1.0001078 | 1.0004229 | 1.0001995 | |----|--------------|------------|--------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|--------------|-----------------|-----------------|----------------|-----------------|--------------|-----------------|--------------|----------------|--------------| | | | Minimum | Fit Slope | 0.9999816 | 1.0001957 | 1.0001623 | 0.9999669 | 1.0000516 | 1.0000966 |
1.0004461 | 1.0000982 | 0.9999914 | 0.9999819 | 0.9999421 | 1.0000798 | 1.0000684 | 1.0001078 | 1.0004229 | 1.0000930 | | | Pressure | Correction | Beta | 8.2780992e-007 | 2.5925486e-007 | 1.1992992e-007 | -2.6771197e-007 | -1.7860936e-007 | -3.7248645e-007 | | -8.4050609e-007 | -1.5340907e-007 | 9.1652413e-008 | -2.7787074e-007 | | -4.1260679e-007 | | 7.2296087e-007 | | | | Conductivity | Fit Bias | (mS/cm) | -0.008628812 | -0.006724099 | -0.003068633 | 0.003561386 | 0.001005201 | 0.002128502 | -0.016829929 | 0.004221180 | 0.002796845 | -0.000313624 | 0.001940049 | -0.001417831 | 0.000073378 | -0.001821845 | 0.011184738 | -0.000890204 | | C | Fit Standard | Deviation | (mS/cm) | 0.001412 | 0.001527 | 0.001390 | 0.001436 | 0.001580 | 0.001278 | 0.002210 | 0.002366 | 0.001127 | 0.001343 | 0.001465 | 0.001569 | 0.001246 | 0.002432 | 0.001516 | 0.003373 | | | | Percent | Points Used | 81.07 | 75.10 | 82.66 | 78.32 | 84.62 | 81.71 | 83.90 | 85.47 | 87.50 | 70.62 | 83.67 | 75.82 | 83.08 | 71.02 | 81.93 | 82.61 | | I0 | | Total | Points | 338 | 498 | 369 | 549 | 390 | 410 | 584 | 351 | 272 | 265 | 009 | 521 | 402 | 528 | 393 | 552 | | | | Points | $_{ m Osed}$ | 274 | 374 | 305 | 430 | 330 | 335 | 490 | 300 | 238 | 399 | 502 | 395 | 334 | 375 | 322 | 456 | | | | Fitting | Routine | Calcop1 | Calcop3 | Calcop2 | Calcop1 | Calcop3 | Calcop1 | Calcos0 | Calcop0 | Calcop3 | Calcop1 | Calcop4 | Calcos2 | Calcop1 | Calcos0 | Calcop0 | Calcos2 | | | | Standard | Seawater | P127 | P135 | P135 | P135 | P135 | P135 | P134 | P136 | | | Sensor | $_{ m S/N}$ | 1536 | 1536 | 1536 | 1537 | 1537 | 1537 | 1180 | 1537 | 1537 | 1537 | 1537 | 1537 | 1537 | 1537 | 1180 | 1537 | | | | | Stations | 1 - 30 | 1 - 43 | 1 - 38 | 1-49 | 1 - 36 | 1 - 38 | 1-51 | 1 - 30 | 1 - 37 | 1-50 | 1 - 52 | 1-50 | 7-42 | 1-48 | 1-48 | 1 - 50 | | | | | Cruise | GP199 | GP299 | GP399 | GP499 | GP599 | GP799 | GP899 | GP999 | GP100 | GP200 | GP300 | GP400 | GP500 | GP600 | GP700 | GP800 | **Figure 2a**: Calibrated CTD-bottle conductivity differences plotted against station number and pressure for cruises GP199 (upper panels) and GP299 (lower panels). **Figure 2b**: Calibrated CTD-bottle conductivity differences plotted against station number and pressure for cruises GP399 (upper panels) and GP499 (lower panels). **Figure 2c**: Calibrated CTD-bottle conductivity differences plotted against station number and pressure for cruises GP599 (upper panels) and GP799 (lower panels). **Figure 2d**: Calibrated CTD-bottle conductivity differences plotted against station number and pressure for cruises GP899 (upper panels) and GP999 (lower panels). **Figure 2e**: Calibrated CTD-bottle conductivity differences plotted against station number and pressure for cruises GP100 (upper panels) and GP200 (lower panels). **Figure 2f**: Calibrated CTD-bottle conductivity differences plotted against station number and pressure for cruises GP300 (upper panels) and GP400 (lower panels). **Figure 2g**: Calibrated CTD-bottle conductivity differences plotted against station number and pressure for cruises GP500 (upper panels) and GP600 (lower panels). **Figure 2h**: Calibrated CTD-bottle conductivity differences plotted against station number and pressure for cruises GP700 (upper panels) and GP800 (lower panels). Figure 3: Calibrated CTD-bottle oxygen differences plotted against station number and pressure for cruise GP700. This page is intentionally left blank. **Figure 4**: GP2-99-KA spring and GP8-99-RB fall potential temperature ($^{\circ}$ C) sections along 95°W. Contour intervals are 1 $^{\circ}$ C. **Figure 5**: GP2-00-KA spring and GP7-00-RB fall potential temperature ($^{\circ}$ C) sections along 95°W. Contour intervals are 1 $^{\circ}$ C. **Figure 6**: GP2-99-KA spring and GP8-99-RB fall salinity (PSS-78) sections along 95°W. Contour intervals are 0.1 PSS. **Figure 7**: GP2-00-KA spring and GP7-00-RB fall salinity (PSS-78) sections along 95°W. Contour intervals are 0.1 PSS. Figure 8: GP2-99-KA spring and GP8-99-RB fall potential density (kg/m³) sections along 95°W. Contour intervals are 0.5 less than 26.0 and 0.2 greater than 26.0. Figure 9: GP2-00-KA spring and GP7-00-RB fall potential density (kg/m³) sections along 95°W. Contour intervals are 0.5 less than 26.0 and 0.2 greater than 26.0. **Figure 10:** GP7-00-RB fall CTD oxygen (μ mol/kg) section along 95°W. Contour intervals are 5 from 0–10 μ mol/kg, 10 from 10–100 μ mol/kg, and 20 from 100–300 μ mol/kg. This page is intentionally left blank. **Figure 11**: GP2-99-KA spring and GP8-99-RB fall potential temperature ($^{\circ}$ C) sections along 110 $^{\circ}$ W. Contour intervals are 1 $^{\circ}$ C. Figure 12: GP2-00-KA spring and GP7-00-RB fall potential temperature (°C) sections along 110°W. Contour intervals are 1° C. Figure 13: GP2-99-KA spring and GP8-99-RB fall salinity (PSS-78) sections along 110°W. Contour intervals are 0.1 PSS. Figure 14: GP2-00-KA spring and GP7-00-RB fall salinity (PSS-78) sections along 110°W. Contour intervals are 0.1 PSS. Figure 15: GP2-99-KA spring and GP8-99-RB fall potential density (kg/m³) sections along 110°W. Contour intervals are $0.5~\mathrm{less}$ than $26.0~\mathrm{and}$ $0.2~\mathrm{greater}$ than 26.0. Figure 16: GP2-00-KA spring and GP7-00-RB fall potential density (kg/m³) sections along 110°W. Contour intervals are 0.5 less than 26.0 and 0.2 greater than 26.0. **Figure 17**: GP7-00-RB fall CTD oxygen (μ mol/kg) section along 110°W. Contour intervals are 5 from 0–10 μ mol/kg, 10 from 10–100 μ mol/kg, and 20 from 100–300 μ mol/kg. This page is intentionally left blank. **Figure 18**: GP1-99-KA winter and GP5-99-KA fall potential temperature ($^{\circ}$ C) sections along 125 $^{\circ}$ W. Contour intervals are 1 $^{\circ}$ C. Figure 19: GP1-00-KA winter and GP5-00-KA fall potential temperature (°C) sections along 125°W. Contour intervals are 1° C. Figure 20: GP1-99-KA winter and GP5-99-KA fall salinity (PSS-78) sections along 125°W. Contour intervals are 0.1 PSS. Figure 21: GP1-00-KA winter and GP5-00-KA fall salinity (PSS-78) sections along 125°W. Contour intervals are 0.1 PSS. Figure 22: GP1-99-KA winter and GP5-99-KA fall potential density (kg/m³) sections along 125°W. Contour intervals are $0.5~\mathrm{less}$ than $26.0~\mathrm{and}$ $0.2~\mathrm{greater}$ than 26.0. Figure 23: GP1-00-KA winter and GP5-00-KA fall potential density (kg/m³) sections along 125°W. Contour intervals are 0.5 less than 26.0 and 0.2 greater than 26.0. **Figure 24**: GP1-99-KA winter and GP5-99-KA fall potential temperature ($^{\circ}$ C) sections along 140°W. Contour intervals are 1 $^{\circ}$ C. Figure 25: GP1-00-KA winter and GP5-00-KA fall potential temperature (°C) sections along 140°W. Contour intervals are 1° C. Figure 26: GP1-99-KA winter and GP5-99-KA fall salinity (PSS-78) sections along 140°W. Contour intervals are 0.1 PSS. Figure 27: GP1-00-KA winter and GP5-00-KA fall salinity (PSS-78) sections along 140°W. Contour intervals are 0.1 PSS. Figure 28: GP1-99-KA winter and GP5-99-KA fall potential density (kg/m³) sections along 140°W. Contour intervals are $0.5~\mathrm{less}$ than $26.0~\mathrm{and}$ $0.2~\mathrm{greater}$ than 26.0. Figure 29: GP1-00-KA winter and GP5-00-KA fall potential density (kg/m³) sections along 140°W. Contour intervals are 0.5 less than 26.0 and 0.2 greater than 26.0. **Figure 30:** GP3-99-KA summer and GP7-99-KA fall potential temperature ($^{\circ}$ C) sections along 155 $^{\circ}$ W. Contour intervals are 1 $^{\circ}$ C. **Figure 31**: GP3-00-KA summer and GP6-00-KA fall potential temperature ($^{\circ}$ C) sections along 155 $^{\circ}$ W. Contour intervals are 1 $^{\circ}$ C. Figure 32: GP3-99-KA summer and GP7-99-KA fall salinity (PSS-78) sections along 155°W. Contour intervals are 0.1 PSS. **Figure 33**: GP3-00-KA summer and GP6-00-KA fall salinity (PSS-78) sections along 155°W. Contour intervals are 0.1 PSS. Figure 34: GP3-99-KA summer and GP7-99-KA fall potential density (kg/m³) sections along 155°W. Contour intervals are 0.5 less than 26.0 and 0.2 greater than 26.0. **Figure 35**: GP3-00-KA summer and GP6-00-KA fall potential density (kg/m^3) sections along 155°W. Contour intervals are 0.5 less than 26.0 and 0.2 greater than 26.0. **Figure 36**: GP3-99-KA summer and GP7/9-99-KA fall potential temperature (°C) sections along 170°W. Contour intervals are 1°C. **Figure 37:** GP3-00-KA summer and GP6-00-KA fall potential temperature ($^{\circ}$ C) sections along 170°W. Contour intervals are 1 $^{\circ}$ C. **Figure 38**: GP3-99-KA summer and GP7/9-99-KA fall salinity (PSS-78) sections along 170°W. Contour intervals are 0.1 PSS. **Figure 39**: GP3-00-KA summer and GP6-00-KA fall salinity (PSS-78) sections along 170° W. Contour intervals are 0.1 PSS. Figure 40: GP3-99-KA summer and GP7/9-99-KA fall potential density (kg/m³) sections along 170°W. Contour intervals are 0.5 less than 26.0 and 0.2 greater than 26.0. Figure 41: GP3-00-KA summer and GP6-00-KA fall potential density (kg/m³) sections along 170°W. Contour intervals are 0.5 less than 26.0 and 0.2 greater than 26.0. **Figure 42**: GP4-99-KA summer and GP9-99-KA fall potential temperature ($^{\circ}$ C) sections along 180 $^{\circ}$. Contour intervals are 1 $^{\circ}$ C. Figure 43: GP4-00-KA summer and GP8-00-KA fall potential temperature (°C) sections along 180°. Contour intervals Figure 44: GP4-99-KA summer and GP9-99-KA fall salinity (PSS-78) sections along 180°. Contour intervals are 0.1 PSS. Figure 45: GP4-00-KA summer and GP8-00-KA fall salinity (PSS-78) sections along 180°. Contour intervals are 0.1 PSS. Figure 46: GP4-99-KA summer and GP9-99-KA fall potential density (kg/m³) sections along 180°. Contour intervals are $0.5~\mathrm{less}$ than $26.0~\mathrm{and}$ $0.2~\mathrm{greater}$ than 26.0. Figure 47: GP4-00-KA summer and GP8-00-KA fall potential density (kg/m³) sections along 180°. Contour intervals are 0.5 less than
26.0 and 0.2 greater than 26.0. Figure 48: GP4-99-KA summer potential temperature (°C) section along 165°E. Contour intervals are 1°C. **Figure 49**: GP4-00-KA summer and GP8-00-KA fall potential temperature (°C) sections along 165°E. Contour intervals are 1°C. Figure 50: GP4-99-KA summer salinity (PSS-78) sections along 165°E. Contour intervals are 0.1 PSS. **Figure 51**: GP4-00-KA summer and GP8-00-KA fall salinity (PSS-78) sections along 165°E. Contour intervals are 0.1 PSS. **Figure 52**: GP4-99-KA summer potential density (kg/m^3) section along $165^{\circ}E$. Contour intervals are 0.5 less than 26.0 and 0.2 greater than 26.0. Figure 53: GP4-00-KA summer and GP8-00-KA fall potential density (kg/m³) sections along 165°E. Contour intervals are 0.5 less than 26.0 and 0.2 greater than 26.0. Figure 54: GP2-99-KA spring (May 19–28, 1999) and GP8-99-RB fall (November 23–December 2, 1999) composite TS diagrams along 95°W. **Figure 55**: GP2-00-KA spring (April 21–30, 2000) and GP7-00-RB fall (November 3–12, 2000) composite TS diagrams along 95° W. **Figure 56**: GP2-99-KA spring (May 7–14, 1999) and GP8-99-RB fall (November 11–19, 1999) composite TS diagrams along 110° W. **Figure 57**: GP2-00-KA spring (May 4–13, 2000) and GP7-00-RB fall (October 22–30, 2000) composite TS diagrams along 110° W. Figure 58: GP1-99-KA winter (February 11–17, 1999) and GP5-99-KA fall (September 28–October 5, 1999) composite TS diagrams along 125°W. Figure 60: GP1-99-KA winter (January 30–February 6, 1999) and GP5-99-KA fall (September 16–23, 1999) composite TS diagrams along 140°W. **Figure 61**: GP1-00-KA winter (February 8–14, 2000) and GP5-00-KA fall (September 20–28, 2000) composite TS diagrams along 140° W. **Figure 62**: GP3-99-KA summer (July 3–12, 1999) and GP7-99-KA fall (October 23–31, 1999) composite TS diagrams along 155° W. $\textbf{Figure 63:} \ \text{GP3-00-KA summer (June 17-25, 2000) and GP6-00-KA fall (October 17-25, 2000) composite TS diagrams along 155 °W.$ **Figure 64**: GP3-99-KA summer (July 15–August 28, 1999) and GP7/9-99-KA fall (November 5–December 8, 1999) composite TS diagrams along 170° W. Figure 65: GP3-00-KA summer (June 29–July 7, 2000) and GP6-00-KA fall (October 29–November 4, 2000) composite TS diagrams along 170°W. **Figure 66**: GP4-99-KA summer (August 17–24, 1999) and GP9-99-KA fall (November 24–30, 1999) composite TS diagrams along 180° . Figure 67: GP4-00-KA summer (July 30-August 7, 2000) and GP8-00-KA fall (November 27-December 4, 2000) composite TS diagrams along 180° . **Figure 68**: GP4-99-KA summer (August 5–14, 1999) composite TS diagram along $165^{\circ}\mathrm{E}$. **Figure 69:** GP4-00-KA summer (July 19–26, 2000) and GP8-00-KA fall (November 16–23, 2000) composite TS diagrams along 165° E. Figure 70: GP7-00-RB fall (October 22–November 3, 2000) composite TO diagrams along 95°W and 110°W. **Table 4**: Weather condition code used to describe each set of CTD measurements. | Code | Weather Condition | |------|--| | 0 | Clear (no cloud) | | 1 | Partly cloudy | | 2 | Continuous layer(s) of cloud(s) | | 3 | Sandstorm, dust storm, or blowing snow | | 4 | Fog, thick dust or haze | | 5 | Drizzle | | 6 | Rain | | 7 | Snow, or rain and snow mixed | | 8 | Shower(s) | | 9 | Thunderstorms | **Table 5**: Sea state code used to describe each set of CTD measurements. | Code | Height (meters) | Description | |------|-----------------|----------------| | 0 | 0 | Calm-glassy | | 1 | 0-0.1 | Calm-rippled | | 2 | 0.1 – 0.5 | Smooth-wavelet | | 3 | 0.5 – 1.25 | Slight | | 4 | 1.25 – 2.5 | Moderate | | 5 | 2.5 - 4 | Rough | | 6 | 4-6 | Very rough | | 7 | 6–9 | High | | 8 | 9-14 | Very high | | 9 | >14 | Phenomenal | **Table 6:** Visibility code used to describe each set of CTD measurements. | Code | Visibility | |------|------------------------| | 0 | < 50 meters | | 1 | 50-200 meters | | 2 | 200-500 meters | | 3 | 500-1,000 meters | | 4 | 1-2 km | | 5 | $2-4~\mathrm{km}$ | | 6 | 4 – $10~\mathrm{km}$ | | 7 | 10-20 km | | 8 | 20-50 km | | 9 | 50 km or more | Table 7: Cloud type. | Code | Cloud Types | |------|--------------------| | 0 | Cirrus | | 1 | Cirrocumulus | | 2 | Cirrostratus | | 3 | Altocumulus | | 4 | Altostratus | | 5 | Nimbostratus | | 6 | Stratocumulus | | 7 | Stratus | | 8 | Cumulus | | 9 | Cumulonimbus | | X | Clouds not visible | Table 8: Cloud amount. | Code | Cloud Amount | |------|--------------------------------| | 0 | 0 | | 1 | 1/10 or less but not zero | | 2 | 2/10-3/10 | | 3 | 4/10 | | 4 | 5/10 | | 5 | 6/10 | | 6 | 7/10-8/10 | | 7 | 9/10 | | 8 | 10/10 | | 9 | Sky obscured or not determined | All CTD and Hydrographic Data can be obtained by contacting K.E. McTaggart at kem@pmel.noaa.gov.